首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrasonic nanocrystalline surface modification (UNSM) was applied to disk specimens made of Cu-Zn alloy in order to investigate the UNSM effects under five various conditions on wear of deformation twinning. In this paper, ball-on-disk test was conducted, and the results of UNSM-treated specimens showed that surface layer dislocation density and multi-directional twins were abruptly increased, and the grain size was altered into nano scale. UNSM delivers force onto the workpiece surface 20,000 times per second with 1,000 to 4,000 contact counts per square millimeter. The UNSM technology creates nanocrystalline and deformation twinning on the workpiece surface. One of the main concepts of this study is that defined phenomena of the UNSM technology, and the results revealed that nanocrystalline and deformation twinning depth might be controlled by means of impact energy of UNSM technology. EBSD and TEM analyses showed that deformation layer was increased up to 268 microm, and initial twin density was 0.001 x 10(6) cm(-2) and increased up to 0.343 x 10(6) cm(-2). Wear volume loss was also decreased from 703 x 10(3) mm3 to 387 x 10(3) mm3. Wear behavior according to deformation depth was observed under three different combinations. This is related to deformation depth which was created by UNSM technology.  相似文献   

2.
The fact that one of fundamental characteristics of fretting is the very small sliding amplitude dictates the unique feature of wear mechanism. Ultrasonic Nanocrystalline Surface Modification (UNSM) technology was applied in order to investigate its effect on the high-frequency fretting wear behavior of AISI304 steel. Its influence on the fretting wear is also reported in this paper with these treated and untreated samples. UNSM delivers force onto the workpiece surface 20,000 times per second with 1,000 to 4,000 contact counts per square millimeter. UNSM creates homogenous nanocrystalline structures as well on the surface. UNSM process is expected to eliminate or significantly retard the formation of fretting wear. Nanocrystalline structure generation after UNSM has been reported to produce its unique structure and to offer a variety of beneficial properties compared to conventionally treated materials. A deformed layer of 220 microm exhibits high dislocation density, where top layer transformed to a nanostructure of the grain size in 23 nm and mechanical twins were observed. Deformation-induced martensite was observed to form at the intersections of mechanical twins, whose volume fraction has increased up to 38.4% and wear loss rate at 800,000 cycles has decreased by 40%. In this paper, experimental results are discussed to elucidate potential mechanism of high-frequency fretting wear.  相似文献   

3.
Gigacycle fatigue of ferrous alloys   总被引:9,自引:0,他引:9  
The objective of this paper is to determine the very long fatigue life of ferrous alloys up to 1 × 1010 cycles at an ultrasonic frequency of 20 kHz. A good agreement is found with the results from conventional tests at a frequency of 25 Hz by Renault between 105 and 107 cycles for a spheroidal graphite cast iron. The experimental results show that fatigue failure can occur over 107 cycles, and the fatigue endurance stress S max continues to decrease with increasing number of cycles to failure between 106 and 109 cycles. The evolution of the temperature of the specimen caused by the absorption of ultrasonic energy is studied. The temperature increases rapidly with increasing stress amplitudes. There is a maximum temperature between 106 and 107 cycles which may be related to the crack nucleation phase. Observations of fracture surfaces were also made by scanning electron microscopy (SEM). Subsurface cracking has been established as the initiation mechanism in ultra-high-cycle fatigue (>107 cycles). A surface–subsurface transition in crack initiation location is described for the four low-alloy high-strength steels and a SG cast iron.  相似文献   

4.
Gigacycle fatigue behavior of a high chromium alloyed cold work tool steel   总被引:1,自引:0,他引:1  
The influence of carbides and the effect of surface residual stresses (RS), resulting from heat treatment or from the grinding/polishing process, on the fatigue behavior in the gigacycle regime of ingot metallurgy produced D2 type tool steel was examined. RS were found to be responsible for the occurrence of two failure modes: Internal cracks initiating at large primary carbides (clusters) were observed in the cycle number range of 105–106, while in the gigacycle regime near-surface cracks originating at primary carbides caused failure, which was related to degradation of the RS by cyclic loading. Simple models were employed estimating the RS degradation process and the local fatigue strength along the specimen cross section as a function of active RS. In absence of considerable RS predominantly near-surface crack initiation was obtained.  相似文献   

5.
Microstructure irreversibility plays a major role in the gigacycle fatigue crack initiation. Surface Persistent Slip Bands (PSB) formation on Copper and its alloy was well studied by Mughrabi et al. as typical fatigue crack nucleation in the very high cycle fatigue regime. In the present paper, Armco iron sheet specimens (1 mm thickness) were tested under ultrasonic frequency fatigue loading in tension–compression (R = −1). The test on the thin sheets has required a new design of specimen and new attachment of specimen. After gigacycle fatigue testing, the surface appearance was observed by optical and Scanning Electron Microscope (SEM). Below about 88 MPa stress, there is no PSBs even after fatigue cycle up to 5 × 109. With a sufficient stress (above 88 MPa), PSBs in the ferrite grain was observed by optic microscope after 108 cycles loading. Investigation with the SEM shows that the PSB can appear in the body-centered cubic crystal in the gigacycle fatigue regime. Because of the grain boundary, however, the local PSB did not continually progress to the grain beside even after 109 cycles when the stress remained at the low level.  相似文献   

6.
Gigacycle fatigue data sheets have been published since 1997 by the National Institute for Materials Science. They cover several areas such as high-cycle-number fatigue for high-strength steels and titanium alloys, the fatigue of welded joints, and high-temperature fatigue for advanced ferritic heat-resistant steels. Some unique testing machines are used to run the tests up to an extremely high number of cycles such as 1010 cycles. A characteristic of gigacycle fatigue failure is that it is initiated inside smooth specimens; the fatigue strength decreases with increasing cycle number and the fatigue limit disappears, although ordinary fatigue failure initiates from the surface of a smooth specimen and a fatigue limit appears. For welded joints, fatigue failure initiates from the notch root of the weld, because a large amount of stress is concentrated at the weld toe. The fatigue strength of welded joints has been obtained for up to 108 cycles, which is an extremely high number of cycles for large welded joints. The project of producing gigacycle fatigue data sheets is still continuing and will take a few more years to complete.  相似文献   

7.
8.
Gigacycle fatigue data sheets have been published since 1997 by the National Institute for Materials Science. They cover several areas such as high-cycle-number fatigue for high-strength steels and titanium alloys, the fatigue of welded joints, and high-temperature fatigue for advanced ferritic heat-resistant steels. Some unique testing machines are used to run the tests up to an extremely high number of cycles such as 1010 cycles. A characteristic of gigacycle fatigue failure is that it is initiated inside smooth specimens; the fatigue strength decreases with increasing cycle number and the fatigue limit disappears, although ordinary fatigue failure initiates from the surface of a smooth specimen and a fatigue limit appears. For welded joints, fatigue failure initiates from the notch root of the weld, because a large amount of stress is concentrated at the weld toe. The fatigue strength of welded joints has been obtained for up to 108 cycles, which is an extremely high number of cycles for large welded joints. The project of producing gigacycle fatigue data sheets is still continuing and will take a few more years to complete. r 2007 Published by Elsevier Ltd.  相似文献   

9.
Characterization of very high cycle fatigue (VHCF) performance is of significant issue for ensuring long‐term durability and reliability of machinery and structural components due to the growing industrial demands and significant requirements of the advanced systems. In this study, VHCF characteristics of nanocrystallized skins (nanoskin) on JIS SCM435 (AISI 4137) steels were investigated as three different nanoskins on the surface, which was fabricated by altering the static load of ultrasonic nanocrystal surface modification (UNSM) treatment. The fatigue characterization, which shows linearly proportional correlation in the range of 80–120 µm depth of subsurface, was subjected to severe plastic deformation by altering the static loads of UNSM treatment to 40, 70 and 100 N, respectively. The fatigue strength increased up to 30% in the regime of VHCF. The improved strength mainly resulted from the generation of nanocrystalline structure, the enhanced surface uniformity, hardness and residual stress.  相似文献   

10.
Gigacycle fatigue properties of 1800 MPa class spring steels   总被引:2,自引:0,他引:2  
Fatigue tests up to 108 cycles were carried out for two spring steels (Heats A and D1) and one valve spring steel (Heat F) with tensile strength, σ B, of 1720, 1725 and 1764 MPa, respectively. The size and composition of inclusions in Heats Dl and F were controlled. The surface‐type fracture occurred at shorter lives below 106 cycles, while the fish‐eye‐type fracture occurred at longer lives. The fatigue limit, σ W, at 108 cycles was 640 MPa for Heats A and D1 and 700 MPa for Heat F. Al2O3 inclusions for Heat A and both TiN inclusions and matrix cracks, i.e. internal facets, for Heat F were observed at the fish‐eye‐type fracture sites, while only matrix cracks were observed for Heat Dl. ODA, i.e. optically dark area, which is considered to be related to hydrogen effects, were formed around Al2O3 and TiN inclusions. Fatigue tests were also conducted after specimens were heated up to 573 K in high vacuum of 2 × 10–6 Pa. The heat treatment eliminated matrix cracks for Heat D1 and the fatigue limit at 108 cycles recovered to the estimated value of 920 MPa from the equation σ w= 0.53 σ B for the surface fracture. These results suggest that inclusions control and hydrogen influence the gigacycle fatigue properties for these high strength steels. In addition, it is expected that the creation of a martensite structure with a high resistance to hydrogen effects in the inclusion‐controlled steel could achieve the higher fatigue limit estimated for the surface‐type fracture.  相似文献   

11.
Effects of ultrasonic nanocrystal surface modification (UNSM) on the very high cycle fatigue response of AISI 310 stainless steel have been investigated. The higher impact force used in UNSM treatment showed a higher fatigue life improvement. The fatigue life improvement was higher in crack initiation from the surface of specimens. The subsurface crack initiation depth in the alloy increased with increase in the fatigue failure cycles. It was concluded that UNSM treatment can increase the life of the alloy significantly up to very high cycle fatigue.  相似文献   

12.
Fracture and small crack behavior in the very high cycle domain of 109 cycles were investigated with a nickel-based superalloy under ultrasonic fatigue in ambient air at room temperature. The influence of ultrasonic frequency is examined by comparing the results with those in conventional low frequency fatigue. It is found that fatigue strength increases as frequency is raised up to 19.5 kHz and the most of fatigue life is consumed in nucleating and propagating small cracks up to 100 μm. Transition of fracture mode from transgranular ductile fracture to cleavage-dominated fracture occurs beyond a critical stress intensity factor range of approximately , leading to the catastrophic failure under ultrasonic fatigue.  相似文献   

13.
超声化学沉淀法制备纳米NiO   总被引:1,自引:0,他引:1  
以Ni(NO3)2·6H2O和(NH4)2C2O4·H2O为原料,采用超声沉淀法制备了纳米NiO,并利用XRD、FT-IR和TEM等分析方法对前驱体及产品组成和形貌进行了表征.结果表明,超声沉淀法制备的纳米NiO前驱体是二水合草酸镍.和实验制备的大颗粒Nio相比,纳米氧化镍Ni-O伸缩振动吸收峰及肩峰均发生了红移.纳米...  相似文献   

14.
For the improvement of the fatigue strength for welded structures, mechanical posttreatments have been applied in various industrial fields and in most cases have been found to give substantial increases in their fatigue lives. These methods, generally, consist of the modification of weld toe geometry and the introduction of compressive residual stresses. In mechanical surface treatments, for example, PHP (pneumatic hammer peening) and UNSM (ultrasonic nanocrystal surface modification), the weld profile is modified due to removed or reduced minute crack‐like flaws, and compressive residual stresses are also induced. In this study, a PHP procedure and a UNSM device were introduced, and a quantitative measure of fatigue strength improvement was performed. The fatigue strength at 2 × 106 cycles of hammer‐peened and UNSM treated on a non‐load‐carrying cruciform welded joint shows 220 and 260 MPa, respectively, which are more than two times higher than that of as‐welded specimen. Especially, the surface layer in the vicinity weld toe treated by the UNSM provides nanocrystal structure created by an ultrasonic cold forging and introduces very high welding residual stress in compression.  相似文献   

15.
Ultrasonic nanocrystal surface modification (UNSM) technology is a novel surface modification technology that can improve the mechanical and tribological properties of interacting surfaces in relative motion. UNSM treatment was utilized to improve the wear resistance fatigue strength of slim bearing rings made of SAE52100 bearing steel without damaging the raceway surfaces. In this study, wear and fatigue results that were subjected to different impact loads of the UNSM treatment were investigated and compared with those of the untreated specimen. The microhardness of the UNSM-treated specimens increased by about 20%, higher than that of the untreated specimens. The X-ray diffraction analysis showed that a compressive residual stress of more than 1,000 MPa was induced after the UNSM treatment. Also, electron backscatter diffraction analysis was used to study the surface structure and nanograin refinement. The results showed that the rolling contact fatigue life and the rotary bending fatigue strength of the UNSM-treated specimens increased by about 80% and 31%, respectively, compared to those of the untreated specimen. These results might be attributed to the increased microhardness, the induced compressive residual stress, and the nanocrystal structure modification after the UNSM treatment. In addition, the fracture surface analysis showed that the fish eye crack initiation phenomenon was observed after the UNSM treatment.  相似文献   

16.
The recently increased interest in very high cycle fatigue properties of materials has led to extended use and further development of the ultrasonic fatigue testing technique. Specimens are stimulated to resonance vibrations at ultrasonic frequency, where the high frequency allows collecting lifetime data of up to 1010 cycles and measuring crack propagation rates down to 10?12 m per cycle within reasonable testing times. New capabilities and methods of ultrasonic testing and outstanding results obtained since the year 1999 are reviewed. Ultrasonic tests at load ratios other than R = ?1, variable amplitude tests, cyclic torsion tests and methods for in situ observation of fatigue damage are described. Advances in testing at very high temperatures or in corrosive environments and experiments with other than bulk metallic materials are summarized. Fundamental studies with copper and duplex steel became possible and allowed new insights into the process of very high cycle fatigue damage. Higher cyclic strength of mild steels measured at ultrasonic frequency because of plastic strain rate effects are described. High‐strength steels and high‐alloy steels are less prone to frequency influences. Environmental effects that can lead to prolonged lifetimes in some aluminium alloys and possible frequency effects in titanium and nickel and their alloys are reviewed.  相似文献   

17.
ABSTRACT In evaluating the giga-cycle fatigue strength of some high strength steels, information on the size distribution of nonmetallic inclusions contained in the material is indispensable. To save time and effort of obtaining such data concerning the inclusions, a convenient dissolution method to evaluate the maximum inclusion size is proposed, in place of a conventional method of measuring the inclusion sizes on many cross-sectional areas. Meanwhile, to save time-consuming work of obtaining giga-cycle fatigue properties of some metallic materials, an intermittent ultrasonic fatigue testing method has also been developed. In the present paper, these two newly developed methods were successfully combined to assess the long life fatigue properties of maraging steels as a function of inclusion size.  相似文献   

18.
Two corrosive media were used (3.5 wt% NaCl aqueous solution and distilled water) to examine the corrosion‐fatigue behavior of AA 7075‐T651, subjected to various surface modifications (wire‐EDM, blasting, and anodizing). An in‐situ corrosion‐fatigue device was used to test the corrosion‐fatigue durability. The apparatus is able to generate cyclic loads within a corrosive solution. The mechanical loading is simulated with the aid of finite element method (FEM). At both corrosive environments, a prolongation of the corrosion‐fatigue life was achieved by the blasting procedure, compared with the as‐machined specimens under same conditions. Anodizing had a deleterious impact in all examined cases.  相似文献   

19.
仿生非光滑表面45#钢模具的热疲劳性能   总被引:5,自引:1,他引:4  
利用动物体表仿生学原理制备45#钢模具非光滑表面试样,通过自约束冷热疲劳试验方法,对比研究了光滑与非光滑试样的热疲劳特性,观察分析了热疲劳裂纹在仿生非光滑表面上扩展的形貌和内部机理.结果表明,非光滑单元体对热疲劳裂纹有阻断作用,仿生非光滑表面使模具的热疲劳抗力显著提高,模具表面的热疲劳性能在非光滑单元体的某一密度范围内达到最佳状态.在细晶强化、合金强化等强化机制下,由仿生非光滑单元体构筑的"桩钉"效应是导致模具抗热疲劳性提高的主要原因.  相似文献   

20.
The theory of Kino and Auld which relates the reflection coefficient of acoustic waves from a crack to its size is summarized. A scattering model is evaluated from this theory concerning the reflection of surface acoustic waves (SAW) from a small surface fatigue crack at a frequency such that the crack depth is much smaller than the acoustic wavelength. Acoustic predictions of crack depth are compared to postfracture measurements of depth for small surface cracks in Pyrex glass, 7075-T651 aluminum, and 4340 steel. Additionally, the minimum detectable crack depth as limited by the acoustic noise level is determined for several typical aluminum and steel alloys. The utility of SAW reflection coefficient measurements for inferring crack depth, crack growth, and crack opening behaviorin situ during fatigue cycling is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号