首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO nanorods were grown on MgxZn1-xO seed layers with different content ratio ranging from 0 to 0.3 by hydrothermal method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out to investigate the effects of Mg content ratio for the MgxZn1-xO seed layers on the structural and optical properties of the ZnO nanorods. The surface morphology and structural properties of the MgxZn1-xO seed layers were changed by the Mg incorporation. However, the appearance, such as density, diameter, and shape, of the ZnO nanorods grown on the MgxZn1-xO seed layers was not changed significantly. The highest intensity ratio of the near-band-edge emission (NBE) to deep-level emission (DLE) and the narrowest full width at half maximum (FWHM) of the NBE peaks, indicating improvement in the crystallinity and luminescent properties of the ZnO crystals, were observed in the ZnO nanorods grown on the MgxZn1_xO seed layers with the content ratio of the 0.05.  相似文献   

2.
We studied the effects of seed layers on the structural and optical properties of ZnO nanorods. ZnO and Ag-doped ZnO (ZnO:Ag) seed layers were deposited on glass substrates by magnetron co-sputtering. ZnO nanorods were grown on these seed layers by the chemical bath deposition in an aqueous solution of Zn(NO3)2 and hexamethyltetramine. SEM micrographs clearly reveal that ZnO nanorods were successfully grown on both kinds of seed layers. The XRD patterns indicate that crystallization of ZnO nanorods is along the c-axis. Meanwhile, the packing density and the vertical alignment of the ZnO nanorods on the ZnO seed layer are better than those of the ZnO nanorods on ZnO:Ag. The enhanced growth of nanorods is thought to be due to the fact that the ZnO layer exhibits a higher crystalline quality than the ZnO:Ag layer. According to the low-temperature photoluminescence spectra, the ZnO nanorods on the ZnO seed layer show a narrow strong ultraviolet emission band centered at 369 nm, while those on ZnO:Ag exhibit multiple bands. These results are thought to be related with the crystallinity of ZnO nanorods, the morphologies of ZnO nanorods, and the reflectivities of seed layers. More detailed studies for clarification of the seed layer effect on the growth of ZnO nanorods are desirable.  相似文献   

3.
Well-aligned ZnO nanorod films were grown onto transparent conducting substrates by using an aqueous solution route. The presence of some reflections in the X-ray diffraction pattern of the ZnO films indicates the vertical alignment of the nanorods along the c axis of the wurtzite hexagonal structure. Well-aligned ZnO nanorods were observed by scanning electron microscopy. The presence of top ZnO microflower layers over the ZnO nanorod film was observed for all growth times studied. The ZnO nanorods with ZnO microflower top layers were applied as photoelectrodes in dye-sensitized solar cells. Higher photocurrent densities and photovoltages were observed with longer nanorod growth times. The high performance of the dye-sensitized solar cells might be associated to the combination of ZnO nanorods and microflowers in the same photoelectrode.  相似文献   

4.
Simple hybrid p-n homo-junctions using p-type ZnO thin films and n-type nanorods grown on fluorine tin oxide (FTO) substrates for photovoltaic applications are described. The ZnO nanorods (1.5 μm) were synthesized via an aqueous solution method with zinc nitrate hexahydrate and hexamethylenetetramine on ZnO seed layers. The 10-nm-thick ZnO seed layers showed n-type conductivity on FTO substrates and were deposited with a sputtering-based method. After synthesizing ZnO nanorods, aluminum-nitride co-doped p-type ZnO films (200 nm) were efficiently grown using pre-activated nitrogen (N) plasma sources with an inductively-coupled dual-target co-sputtering system. The structural and electrical properties of hybrid p-n homo-junctions were investigated by scanning electron microscopy, transmittance spectrophotometry, and I-V measurements.  相似文献   

5.
Well-aligned zinc oxide (ZnO) nanorods were densely grown on Si substrate using ZnO thin-film seed layer without any catalysts and/ or additives by a simple solid–vapour phase thermal sublimation technique. The growth mechanism can be interpreted as self-catalyst of zinc particles based on vapour–solid (VS) mechanism. High-resolution transmission electron microscopy (HRTEM) image and selected area electron diffraction (SAED) pattern confirmed that the single-crystalline growth of the nanorods were preferentially along c-axis of hexagonal crystal system. High-crystal quality ZnO nanorods with strong near band edge emission centred at 380 nm can be achieved on Si substrate by the introduction of sufficient oxygen during the nanorod growth processing.  相似文献   

6.
High-purity ZnO nanorods have been synthesized via a two-step route using zinc acetate as a precursor without any surfactant and additive. In this method, ZnCO3 fibers were first formed in the CO2-ethanol solution, which directed the formation of ZnO nanorods by subsequent treatment in KOH aqueous solution. The as-prepared nanorods were fully characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and Fourier transform Infrared spectroscopy. It was found that the as-obtained ZnO nanorods were single crystals with uniform diameter around 150 nm and length of 4 microm. The nanorod crystals were prismatic with hexagonal cross sections, consistent with the wurtzite lattice structure. Moreover, the sensing properties of the as-prepared ZnO nanorods were also investigated. It was demonstrated that they exhibited good performance for detecting ethanol vapor even at 380 and 250 degrees C.  相似文献   

7.
Well-aligned zinc oxide (ZnO) nanorods were densely grown on Si substrate using ZnO thin-film seed layer without any catalysts and/or additives by a simple solid–vapour phase thermal sublimation technique. The growth mechanism can be interpreted as self-catalyst of zinc particles based on vapour–solid (VS) mechanism. High-resolution transmission electron microscopy (HRTEM) image and selected area electron diffraction (SAED) pattern confirmed that the single-crystalline growth of the nanorods were preferentially along c-axis of hexagonal crystal system. High-crystal quality ZnO nanorods with strong near band edge emission centred at 380 nm can be achieved on Si substrate by the introduction of sufficient oxygen during the nanorod growth processing.  相似文献   

8.
We investigated the effect of ZnO buffer layer thickness on the growth of hydrothermally grown ZnO nanorods. A series of ZnO buffer layers with different thicknesses was deposited on a p-Si (111) substrate using a co-sputtering system. After annealing the ZnO buffer layer, ZnO nanorods grown were grown hydrothermally at 95 degrees C. Unlike ZnO nanorods grown on as-deposited ZnO buffer layer, the diameter and length of ZnO nanorods grown on annealed ZnO buffer layers can be controlled. The structural and optical properties of ZnO nanorods grown on annealed ZnO buffer layers were analyzed by field-emission scanning electron microscopy, X-ray diffraction, and photoluminescence. The influence of ZnO buffer layer thickness on ZnO nanorods growth is discussed.  相似文献   

9.
ZnO nanorods were grown on spin-coated ZnO seed layers by hydrothermal method. The ZnO nanorods were grown with various precursor concentrations ranging from 0.01 to 0.3 M. Field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out to investigate the structural and optical properties of the ZnO nanorods. The average diameter and length of the ZnO nanorods is increased as the precursor concentration increased from 0.01 to 0.3 M. From XRD, the intensity of ZnO (002) peak is increased and full width at half maximum (FWHM) of ZnO (002) decreased as the precursor concentration increased. The FWHM of near-band-edge emission (NBE) decreased and intensity ratio of the NBE to the deep-level emission (DLE) increased as the precursor concentration increased which indicated the optical property is improved. The DLE is red-shifted from yellow- to red-emission and its intensity is increased as the annealing temperature increased due to thermal diffusion process.  相似文献   

10.
ZnO thin films were fabricated using the spin coating method, ZnO nanowires by cathodically induced sol-gel deposition by the means of an anodic aluminum oxide (AAO) template, and ZnO nanorods with the hydrothermal technique. For thin film preparation, a clear, homogeneous and stable ZnO solution was prepared by the sol-gel method using zinc acetate (ZnAc) precursor which was then coated on a glass substrate with a spin coater. Vertically aligned ZnO nanowires which were approximately 65 nm in diameter and 10 μm in length were grown in an AAO template by applying a cathodic voltage in aqueous zinc nitrate solution at room temperature. For fabrication of the ZnO nanorods, the sol-gel ZnO solution was coated on glass substrate by spin coating as a seed layer. Then ZnO nanorods were grown in zinc nitrate and hexamthylenetetramine aqueous solution. The ZnO nanorods are approximately 30 nm in diameter and 500 nm in length. The ZnO thin film, ZnO nanowires and nanorods were characterized by X-ray diffraction (XRD) analysis and scanning electron microscope (SEM). The NO2 gas sensing properties of ZnO thin films, nanowires and nanorods were investigated in a dark chamber at 200 °C in the concentration range of 100 ppb-10 ppm. It was found that the response times of both ZnO thin films and ZnO nanorods were approximately 30 s, and the sensor response was depended on shape and size of ZnO nanostructures and electrode configurations.  相似文献   

11.
In the present work, we reported a novel method for the synthesis of well-dispersed flower-like ZnO microstructures derived from highly regulated, well-dispersed ZnO nanorods by using low temperature (100 °C) hydrothermal process and without using any additional surfactant, organic solvents or catalytic agent. The phase and structural analysis were carried out by X-ray diffraction (XRD) which confirms the high crystal quality of ZnO with hexagonal (wurtzite-type) crystal structure. The morphological and structural analyses were carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) which indicate the formation of well-dispersed ZnO nanorods as well as flower-like ZnO. It has been shown that flower-like ZnO is made up of dozen of ZnO nanorods building block units. The high resolution transmission electron microscopy (HRTEM) and their corresponding selected area electron diffraction (SAED) pattern show that both ZnO nanorods and flower-like ZnO microstructures are single crystalline in nature and preferentially grow along [0 0 0 1] direction. Their optical property was characterized by photoluminescence spectroscopy; shows ZnO nanorods have only violet emission and no other emission while flower-like ZnO microstructures have a weak violet emission and a strong visible emission. A plausible growth mechanism of ZnO nanorods as well as flower-like ZnO microstructures has been given.  相似文献   

12.
We report the structural and antireflective properties of ZnO nanorod arrays (NRAs) on silicon (Si) substrate by wet chemical growth using the sputtered ZnO seed layer for solar cell applications. The size, height, shape, and number of ZnO nanorods depend strongly on the ZnO seed layer thickness as well as the molar zinc nitrate concentration. Clearly, the ZnO nanorods are of wurzite crystal structure from the X-ray diffraction analysis. To achieve the low reflectance over a wide wavelength range, the ZnO seed layer thickness, molar concentration, and growth time are optimized. It is found that the specular reflection spectrum of ZnO NRAs is closely related to the ZnO seed layer thickness. The solar weighted reflectance, Rw, of ZnO NRAs as antireflection coatings for Si solar cells is estimated under AM1.5 g illumination. For ZnO NRAs with 50 nm ZnO seed layer in 10 mM aqueous solution for 12 hours, the low specular reflectance (i.e., <7%) is obtained at wavelengths of 300-1200 nm, indicating a low Rw of 3.86%.  相似文献   

13.
We investigated the effects of surface pattern size and shape on the characteristics of hydrothermally grown ZnO nanorods. For this purpose, the structural characteristics of ZnO nanorods were examined using X-ray diffraction and scanning electron microscopy. The sputtered ZnO seed layer was patterned using photolithography techniques on a Si substrate. ZnO nanorods with a [0001] texturing structure were successfully grown on selective areas by hydrothermal processes. In our experiments, however, it was observed that the diameter and the texture of the ZnO nanorods were strongly influenced by the size of the surface pattern.  相似文献   

14.
Pure hexagonal ZnO nanorods were synthesized by low-temperature (90 °C) solvothermal treatment of zinc acetate in 40-80 wt.% hydrazine hydrate aqueous solutions. The products were characterized by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electronic microscopy (TEM), selected area electron diffraction (SAED), and room temperature photoluminescence (RTPL) spectra. They show a strong UV emission at around 380 nm upon excitation at 360 nm using a Xe lamp at room temperature. The influence on the quality of the nanorods was investigated while the content of the solvent changed. The as-synthesized ZnO nanorods are promising materials for nanoscale optoelectronic devices due to their excellent UV emission properties.  相似文献   

15.
Highly-aligned sulfur (S)-doped ZnO nanorods have been grown using the hydrothermal approach at 90 °C for 2 h onto quartz substrate pre-coated with ZnO seed layer deposited by radio frequency magnetron sputtering system. The morphology, crystal structure, and transmittance of the S-doped ZnO nanorods grown with varied sulfur concentration have been investigated. The scanning electron microscope images showed that the S-doped ZnO nanorods dimension is affected by sulfur doping. The nanorods doped with sulfur concentration of ~1, 1.5, and 2 at.% found to show nanorods with an average diameter of ~130, 170, and 270 nm respectively. X-ray diffraction measurements revealed that the sulfur-doped ZnO nanorods have hexagonal-wurtzite crystal structure and grown vertically in the (002) plane along c-axis perpendicular to the substrate. The nanorods doped with 1 at.% sulfur showed ~70 % transmittance in the visible region while the nanorods doped with 2 at.% sulfur showed transmittance of ~77 % and exhibited blue shift in the fundamental absorption edge.  相似文献   

16.
D. Byrne  M.O. Henry  G. Hughes 《Thin solid films》2010,518(16):4489-5386
We report a three-step deposition process for uniform arrays of ZnO nanorods, involving chemical bath deposition of aligned seed layers followed by nanorod nucleation sites and subsequent vapour phase transport growth of nanorods. This combines chemical bath deposition techniques, which enable substrate independent seeding and nucleation site generation with vapour phase transport growth of high crystalline and optical quality ZnO nanorod arrays. Our data indicate that the three-step process produces uniform nanorod arrays with narrow and rather monodisperse rod diameters (∼ 70 nm) across substrates of centimetre dimensions. X-ray photoelectron spectroscopy, scanning electron microscopy and X-ray diffraction were used to study the growth mechanism and characterise the nanostructures.  相似文献   

17.
采用化学溶液沉积法,在ZnO纳米颗粒膜修饰的FTO导电玻璃基底上,制备了ZnO纳米棒阵列。用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)对样品进行表征。研究结果表明所制备的ZnO纳米棒为六方纤锌矿相单晶结构,沿c轴择优取向生长,平均直径约为40nm,长度约为900nm;ZnO纳米棒阵列生长致密,取向性较一致。以曙红Y敏化的ZnO纳米棒阵列膜为光阳极制作了染料敏化太阳能电池原型器件,在光照强度为100mW/cm2下,其开路电压为0.418V,短路电流为0.889mA/cm2,总的光电转换效率为0.133%。  相似文献   

18.
ZnO nanorods were synthesized at low temperature by hydrothermally heating 0·1 M solution of ZnCl2 for 5, 10 and 15 h at a pH of 10. No template, seeded substrate, catalyst and autoclave were employed for the synthesis of ZnO nanorods. The effect of heating durations on the morphology and crystal orientation of the structure were investigated by using scanning electron microscopy and X-ray diffraction, respectively. SEM images showed that the flower-like structures were formed in 5 h hydrothermally-heated sample, whereas the hexagonal zinc oxide nanorods were perfectly fabricated with the increase in growth time. XRD patterns showed that the preferred orientation in nanorods could be controlled by hydrothermal treatment time. The crystallite size and microstrain were analysed by Williamson–Hall and Halder–Wagner methods. These results revealed the presence of defects in ZnO nanorods. However, by increasing the hydrothermal treatment time, both defects in lattice and crystallite size are decreased.  相似文献   

19.
A facile sonochemical route was demonstrated for the direct fabrication of Fe-doped ZnO nanorod arrays on a Si substrate under ambient conditions. By adding Fe3+ ions in reaction solution, Fe is readily in situ doped into ZnO nanorod arrays via ultrasound irradiation. The morphology and structural characteristic of the Fe-doped ZnO nanorods were investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). And crystal structure was characterized by X-ray diffraction (XRD) spectroscopy. Inductively-coupled plasma atomic emission spectroscopy (ICP-AES) confirmed the Fe-doping of ZnO nanorod arrays with a concentration of 0.9 wt.%. In addition, Fe-doped ZnO nanorod showed the enhancement of photoluminescence (PL) intensity in green-yellow emission.  相似文献   

20.
In this paper, we report a new ZnO nanofibers-nanorods structure which was successfully prepared by the electrospun ZnO nanofibers as seed to guide hydrothermal epitaxial growth of the ZnO nanorods. The structure was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL). The XRD results indicate that ZnO nanofibers obtained at 600° have high crystallinity with a typical hexagonal wurtzite structure. Furthermore compared with the strongest diffraction of ZnO nanofibers in (101) plane, the diffraction from (002) plane of ZnO nanofibers-nanorods becomes the strongest. The SEM shows that the diameters of epitaxial-grown ZnO nanorods on ZnO nanofibers were approximately 100–200?nm. The PL spectrum shows that the ZnO nanofibers-nanorods have a broad green-yellow emission around 537?nm, in contrast to that of ZnO nanofibers, the peak had obvious redshift about 24?nm and the luminous intensity weakened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号