首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用化学气相沉积工艺在炭纤维表面生长了碳纳米管,并观察了它的微观形貌,且对其影响因素进行了初步研究.结果表明:纤维表面的纵向沟槽可以负载催化剂粒子,是生长碳纳米管的物理基础;催化剂的浓度太高,金属粒子容易团聚长大,所得碳纳米管的管径较大;而催化剂浓度太低,则不能在炭纤维整个表面均匀生长碳纳米管;最佳的催化剂溶液的浓度是0.05mol/L的硝酸钴.比较了铁、钴、镍三种过渡金属催化剂,从形成的碳纳米管的质量来看,钴催化剂最佳.  相似文献   

2.
Abstract

The article presents the analytical possibilities of the combined use of transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) methods to study of carbon black and metal-carbon nanostructures. Platinum nanoparticles were shown to be formed on the carbon polyhedral structures and nanocapsules as a result of laser exposure to the carbon black suspensions in H2PtCl6 aqueous solution. Phase composition of nickel-carbon and cobalt-carbon core-shell structures was identified.  相似文献   

3.
A method for the galvanic deposition of iron-group metals onto porous silicon (por-Si) substrates has been developed. The morphology and phase composition of por-Si nanocomposites containing galvanically deposited particles of Fe, Co, and their mixtures have been studied by scanning electron microscopy (SEM), ultrasoft X-ray emission spectroscopy (USXES), and X-ray absorption near-edge structure spectroscopy (XANES) techniques. It is established that iron uniformly covers the surface of porous silicon, whereas cobalt penetrates deep into pores in the form of nanoparticles. During the galvanic codeposition of both metals from a mixed solution of their salts, cobalt favors the penetration of iron in depth of the pores.  相似文献   

4.
Monometallic and bimetallic M and M/Pd (M = Fe, Co, Ni) nanoparticles were prepared by pulsed Nd:YAG laser ablation of bulk M and Pd targets in acetone and transferred onto Si wafers to catalyze carbon nanotubes from decomposition of liquid petroleum gas via thermal chemical vapor deposition at 750°C. Transmission electron microscopy and optical extinction study revealed that the prepared M and M/Pd nanoparticles have rather spherical shape and their aspect ratios are nearly one. In comparison to monometallic M catalysts by addition of Pd, the average sizes of produced bimetallic M/Pd catalysts increased. Carbon nanotubes' characterization revealed that by addition of Pd to laser ablated M catalysts the average diameter, the yield, and quality of end product carbon nanotubes were increased. The average diameter of grown carbon nanotubes increases as: Ni < Ni/Pd < Co < Co/Pd < Fe < Fe/Pd and the quality of them increases as: Ni < Co < Fe < Ni/Pd < Fe/Pd < Co/Pd.  相似文献   

5.
Jin Zhang  Longyan Chen 《Materials Letters》2011,65(19-20):2944-2946
In this paper, the polyol process, a catalyst free, non-aqueous, and electroless process, is developed to deposit the nanostructured NixCo100 ? x magnetic films on aluminum nitride (AlN) substrate. Nickel (II) acetate tetrahydrate and cobalt (II) acetate tetrahydrate were reduced by ethylene glycol (EG) at 180 °C, and the reduced Ni and Co nanostructures were deposited on the AlN substrate merged in boiling EG for 60 min. The elongated nanostructures in the films are detected through the scanning electron microscopy (SEM). Interestingly, some of the elongated nanostructures are pointing out of the substrate. It indicates that the component ratio of Ni and Co in the films is different with the starting precursor molar ratio. The film thickness increases from 1 to 1.8 μm when the atomic ratio of Co (at.%) in the film increased from 44.6% to 70.8%. Furthermore, it is found that the crystallite size decreases from 44 to 25 nm with increasing Ni (at.%). In addition, the magnetic properties have been analyzed through vibrating sample magnetometer (VSM) at room temperature. The results show that the films have the perpendicular preferred anisotropy. The anisotropy field (HK) for the Ni50Co50 is about 4.75 kOe, which is possibly caused by the assembled direction of the elongated nanostructures.  相似文献   

6.
ABSTRACT

Metal nanoparticle (MNP) catalysts used for the synthesis of multiwalled carbon nanotubes (MWCNTs) consisted of single metals (Fe, Ni or Co) and bimetallic mixture (CoFe, NiFe or NiCo). MWCNTs were successfully synthesised at 200 °C in 10 min using liquefied petroleum gas as carbon source with non-equilibrium plasma enhanced chemical vapour deposition (PECVD) method. The nanostructures and the morphology of the MNPs and the MWCNTs film were characterised using relevant microscopic and spectroscopic methods. The synthesised MWCNTs were used as part of the electrode material in organic solar cell (OSC) set-up. Poly (3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) was used as an electron transporter and poly-3-hexyl thiophene (P3HT) as an electron donor. The performance of OSC devices was tested using standard electrical measurements and solar simulator operating at 100 mW/cm2. The measured power conversion efficiencies was found to be dependent on the metal catalyst used during synthesis. Among all the catalysts employed in this investigation, the best device performance was found from the synthesis of MWCNTs using Fe as a catalyst followed by Co and then Ni, respectively.  相似文献   

7.
In this research, different nanostructures of cobalt phosphate were successfully prepared. Flowerlike cobalt phosphate and platelike ammonium cobalt phosphate were made by coprecipitation method without any use of surfactant or capping agent as structure directors. Reverse micelle route in water/CTAB/n-hexanol microemulsion system was used to synthesize cobalt phosphate nanoparticles. The synthesized nanostructures were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), chemical analysis, and BET. The SEM images showed that the flowerlike nanostructure is an arrangement of cobalt phosphate plates. TEM images revealed that the nanoparticles are spherical with the diameter of 30-50 nm. The purity of cobalt phosphate nanoparticles was confirmed by chemical analysis. Finally, the possible mechanisms which can describe the formation of these nanostructures were discussed.  相似文献   

8.
Hierarchical carbon nanostructures based on ultra-long carbon nanofibers (CNF) decorated with carbon nanotubes (CNT) have been prepared using plasma processes. The nickel/carbon composite nanofibers, used as a support for the growth of CNT, were deposited on nanopatterned silicon substrate by a hybrid plasma process, combining magnetron sputtering and plasma-enhanced chemical vapor deposition (PECVD). Transmission electron microscopy revealed the presence of spherical nanoparticles randomly dispersed within the carbon nanofibers. The nickel nanoparticles have been used as a catalyst to initiate the growth of CNT by PECVD at 600°C. After the growth of CNT onto the ultra-long CNF, SEM imaging revealed the formation of hierarchical carbon nanostructures which consist of CNF sheathed with CNTs. Furthermore, we demonstrate that reducing the growth temperature of CNT to less than 500°C leads to the formation of carbon nanowalls on the CNF instead of CNT. This simple fabrication method allows an easy preparation of hierarchical carbon nanostructures over a large surface area, as well as a simple manipulation of such material in order to integrate it into nanodevices.  相似文献   

9.
A detailed elaboration of the transformations of iron species, present in natural and Fe(NO(3))(3) loaded montmorillonite, during carbon deposition and carbon nanotube growth is described. According to transmission electron microscopy results, deposited carbon atoms form fibres in the case of pristine montmorillonite and multiwalled carbon nanotubes in the case of Fe(III) loaded montmorillonite. M?ssbauer and x-ray diffraction analysis results point to an extensive reduction of structural and intercalated Fe(III) cations to Fe(II) with the latter migrating from the interlayer space to the vacant octahedral sites of the mineral's lattice. Such migration of the non-structural iron catalyst prohibits extensive contamination of the final composite with various metal catalyst impurities. The crucial role of the active catalytic centres in the formation of carbon nanotubes is ascribed to a minor quantity of iron, found entrapped in the carbon nanostructures, which, at the end of the reaction, is identified as iron carbide. The interesting formation of a nanometric γ-iron precipitate is also detected, which is probably stabilized through strong interactions with the lattice of montmorillonite. Finally, it is demonstrated that iron-rich natural clay minerals can serve as direct catalysts for carbon nanotube growth.  相似文献   

10.
Current research on the carbon-based nanotechnology needs progressive methods to control the shape, location and size of the nanostructures. Here, we report significant progress by synthesising the density controlled carbon nanostructures (CNSs) using acetylene and hydrogen in microwave plasma enhanced chemical vapour deposition system. Thin films of Ni–Cr (80?:?20, 60?:?40 and 50?:?50) sputtered over silicon (1?0?0) were used as catalysts. Scanning electron microscopy images of plasma annealed Ni–Cr coated silicon substrates show distributed nanoparticles of varying compositions over plasma annealed substrates. Morphologically and structurally different CNS were obtained when plasma annealed substrates were exposed to carbon vapours present in plasma. Transmission electron microscopy images suggested that the length and tip of CNS were in the range 50–100?nm and 4–6?nm, respectively. High resolution transmission electron microscopy images of the samples confirmed the presence of graphite (0?0?2) and nickel (2?0?0) planes in CNS. The field emission studies and Kelvin probe measurements of CNS grown over 80?:?20 Ni–Cr substrate show turn-on field and corresponding work function as 1.4?V?µm?1 and 4.4?eV, respectively. Preliminary results show that these nanostructures could act as stable field emitters.  相似文献   

11.
碳弧法制备碳包铁纳米颗粒的研究   总被引:2,自引:0,他引:2  
用直汉碳弧法制备碳包铁纳米颗粒,应用透射电镜(TEM)、X射线衍射分析(XRD)和穆斯堡尔谱学进行研究,结果表明,当阳极复合棒中为纯铁粉加石墨粉时,出现3种碳包铁纳米颗粒:α-Fe,渗碳体(Fe3C)和奥氏体;当阳极复合棒中为Fe2O3加石墨粉时,出现4种碳包铁纳米颗粒:α-Fe,渗碳体,奥氏体和FeO。它们的尺寸大小在5~50nm范围。  相似文献   

12.
Recently the site-density control of carbon nanotubes (CNTs) has attracted much attention as this has become critical for its many applications. To obtain an ordered array of catalyst nanoparticles with good monodispersity nanosphere lithography (NSL) is used. These nanoparticles are tested as catalyst sites in hot-wire chemical vapor deposition (HWCVD) of carbon nanostructures. Aside from using NSL also nickel (Ni) nano-islands are made by thermal annealing of a thin Ni film and tested as catalyst sites. Multiwall CNTs, isolated carbon nanofibres, and other nanostructures have been deposited using HWCVD. Tungsten filaments held at ~ 2000 °C are used to decompose a mixture of ammonia, methane and hydrogen. The structures have been characterized with Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy, Raman spectroscopy and Rutherford Backscattering Spectroscopy.  相似文献   

13.
We report in situ successive depositions of nickel nanoparticles and carbon nanotubes (CNTs) on ordered mesoporous silica films used as template for the catalyst particles. The mesoporous films are synthesized by the evaporation-induced self-assembly process from tetraethyl orthosilicate derived oligomers and a di-block copolymer from dip-coating deposition method. The substrates are decorated with Ni nanoparticles through Ion Beam Deposition and posterior annealing to induce metal coalescence in the mesoporous cavities. CNTs were then grown by Chemical Vapor Deposition in the presence of an electric field. These techniques provide a simple control method producing ordered arrangements of catalyst nanoparticles and ordered nanostructures for large area applications.  相似文献   

14.
Structural transformation of carbon black (CB) into nanotubes and nano-onion like structures in the presence of bimetallic catalysts (Fe and Ni) is reported and the influence of the substrate (alumina and stainless steel) in the structural transformation is studied. In addition, the importance of a specific weight ratio of CB to catalyst in the transformation of amorphous CB into graphitic nanostructures is verified. The experiments were carried out at 1,000 °C in a horizontal tube furnace under N2 atmosphere. The samples were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy and also thermomagnetic analysis (Curie-temperature determinations) were done to assess thermally induced magnetic phase changes. All the characterization techniques showed the resulting structures were influenced by the substrate and weight ratio for CB to catalysts. However, there was no significant difference in the magnetic performance of the resulting structures obtained on different substrates.  相似文献   

15.
Chitosan (CTS)-stabilized bimetallic nanoparticles were prepared at room temperature (rt.) in aqueous solution. Palladium (Pd) and platinum (Pt) were selected as the first metals while iron (Fe) and nickel (Ni) functioned as the second metals. In order to obtain the noble metal core-transition metal shell structures, bimetallic nanoparticles were prepared in a two-step process: the preparation of mono noble metallic (Pd or Pt) nanoparticles and the deposition of transition metals (Fe or Ni) on the surface of the monometallic nanoparticles. The structures of the nanoparticles were studied using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The XPS results show that Pd and Pt exist mainly in zero valences. The presence of Fe and Ni in the bimetallic nanoparticles affects the binding energy of Pd and Pt. Moreover, the studies of O 1s spectra indicate the presence of Fe or Ni shells. The analyses of TEM micrographs give the particle size and size distributions while the high-resolution TEM (HRTEM) micrographs show the existence of noble metal core lattices. The results confirm the formation of noble metal core-transition metal shell structures.  相似文献   

16.
The structure, magnetic and microwave-absorption properties of graphite-coated (Fe, Ni) alloy nanocapsules, synthesized by the arc-discharge method, have been studied. High-resolution transmission electron microscopy shows that the nanocapsules have a core/shell structure with (Fe, Ni) alloy as the core and graphite as the shell. All (Fe, Ni) alloy nanocapsules/paraffin composites show good microwave-absorption properties. The optimal reflection loss (RL) was found for (Fe70Ni30)/C nanocapsules/paraffin composites, being -47.84 dB at 14.6 GHz for an absorber thickness of 1.99 mm, while the RL values exceeding -10 dB were found in the 12.4- 17.4 GHz range, which almost covers the Ku band (12.4-18 GHz). For (Fe70Ni30)/C nanocapsules/paraffin composites, RL values can exceed -10 dB in the 11.4-18 GHz range with an absorber thickness of 1.91 mm, which cover the whole Ku band.  相似文献   

17.
Lai C  Guo Q  Wu XF  Reneker DH  Hou H 《Nanotechnology》2008,19(19):195303
This paper studies the mechanism of the formation of carbon nanostructures on carbon nanofibers with Pd nanoparticles by using different carbon sources. The carbon nanofibers with Pd nanoparticles were produced by carbonizing electrospun polyacrylonitrile (PAN) nanofibers including Pd(Ac)(2). Such PAN-based carbon nanofibers were then used as substrates to grow hierarchical carbon nanostructures. Toluene, pyridine and chlorobenzine were employed as carbon sources for the carbon nanostructures. With the Pd nanoparticles embedded in the carbonized PAN nanofibers acting as catalysts, molecules of toluene, pyridine or chlorobenzine were decomposed into carbon species which were dissolved into the Pd nanoparticles and consequently grew into straight carbon nanotubes, Y-shaped carbon nanotubes or carbon nano-ribbons on the carbon nanofiber substrates. X-ray diffraction analysis and transmission electron microscopy (TEM) were utilized to capture the mechanism of formation of Pd nanoparticles, regular carbon nanotubes, Y-shaped carbon nanotubes and carbon nano-ribbons. It was observed that the Y-shaped carbon nanotubes and carbon nano-ribbons were formed on carbonized PAN nanofibers containing Pd-nanoparticle catalyst, and the carbon sources played a crucial role in the formation of different hierarchical carbon nanostructures.  相似文献   

18.
淀粉基碳包覆铁纳米胶囊的合成及其磁学性能   总被引:3,自引:1,他引:3  
以淀粉为碳源,通过热解炭化铁/淀粉复合物,成功制备出碳包覆铁(Fe@C)纳米胶囊。在这一过程中淀粉有双重作用,既是碳源又是铁纳米颗粒的稳定剂。采用透射电镜、X射线衍射及振动样品磁强计研究了(Fe@C)纳米胶囊的结构和磁学性能。发现Fe@C纳米胶囊具有完美的铁核(bcc-Fe)/碳壳(石墨层片)包覆结构,其尺寸介于30nm~40nm之间;Fe@C纳米胶囊在室温下有低的剩磁比(Mr/Ms=0.11),表明它在室温下具有超顺磁性。  相似文献   

19.
The effect of cobalt (Co) and nickel (Ni) nanoparticle catalysts on the growth of carbon nanotubes (CNTs) were studied, where the CNTs were vertically grown by plasma enhanced chemical vapour deposition (PECVD) method. The growth conditions were fixed at a temperature of 700 °C with a pressure of 1000 mTorr for 40 minutes with various thicknesses of sputtered metal catalysts. Only multi-walled carbon nanotubes are present from the growth as large average diameter of outer tube (~10–30 nm) were measured for both of the catalysts used. Experimental results show that high density of CNTs was observed especially towards thicker catalysts layers where larger and thicker nanotubes were formed. The nucleation of the catalyst with various thicknesses was also studied as the absorption of the carbon feedstock is dependent on the initial size of the catalyst island. The average diameter of particle size increases from 4 to 10 nm for Co and Ni catalysts. A linear relationship is shown between the nanoparticle size and the diameter of tubes with catalyst thicknesses for both catalysts. The average growth rate of Co catalyst is about 1.5 times higher than Ni catalyst, which indicates that Co catalyst has a better role in growing CNTs with thinner catalyst layer. It is found that Co yields higher growth rate, bigger diameter of nanotube and thicker wall as compared to Ni catalyst. However, variation in Co and Ni catalysts thicknesses did not influence the quality of CNTs grown, as only minor variation in IG/ID ratio from Raman spectra analysis. The study reveals that the catalysts thickness strongly affects not only nanotube diameter and growth rate but also morphology of the nanoparticles formed during the process without influencing the quality of CNTs.  相似文献   

20.
The thermal stability of α-Fe203 and γ-Fe2O3 nanowires was studied by post annealing the samples at different temperatures. Before and after annealing, the samples were characterized by X-ray diffraction and scanning electron microscopy. The α-Fe2O3 nanowires are stable at the temperatures up to 600℃, and the crystalline structure becomes more perfect after annealing. This behavior supplies a way to improve the quality of the α-Fe2O3 nanowires. The γ-Fe2O3 nanowires become unstable when annealed at 350℃. Raman spectra of both nanowires have been measured, which also indicate that the γ-Fe203 nanowires are transformed into α-Fe2O3 under the strong laser beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号