首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Al2O3 matrix with three grades of Cr3C2 particle size (0.5, 1.5 and 7.5 m) composites were fabricated by a hot-pressing technique. Fully dense compacts with Cr3C2 content up to 40 vol % can be acquired at 1400 °C under 30 MPa pressure for 1 h. The flexural strength increases from 595 to 785 Mpa for fine Cr3C2 particle (0.5 m) reinforced Al2O3 matrix composites. The fracture strength is significantly dependent on the fracture modes of matrix (intergranular or transgranular). The transgranular fracture with a compressive residual stress gives a high fracture strength of composites. At the same time, the fracture toughness increases from 5.2 MPa m1/2 (10 vol % Cr3C2) to 8.0 MPa m1/2 (30 vol % Cr3C2) for the coarse Cr3C2 particle (7.5 n) reinforced Al2O3 matrix composites. The toughening effects of incorporating Cr3C2 particles into Al2O3 matrix originate from crack bridging and deflection. The electrical conductivity and the possibility of electrical discharge machining of these composites were also investigated.  相似文献   

3.
Al2O3 is a popular ceramic and has been used widely in many applications and studied in many aspects. On the other hand, zirconia-toughened alumina (ZTA) is a desirable material for engineering ceramics because of its high hardness, high wear resistance and high toughness. In the present research, Al2O3-Cr2O3-ZrO2 composites were produced by hot-pressing in order to harden the Al2O3 matrix in ZTA. Its microstructure and mechanical properties were studied by SEM, ESCA, XRD, Vickers hardness and bending strength test. It was found that addition of ZrO2 inhibited the grain growth of Al2O3-Cr2O3 and the grain growth of ZrO2 proceeded with increasing amounts of ZrO2 in the Al2O3-Cr2O3-Zr2 composite. The formation of solid solution Al2O3-Cr2O3 was also confirmed by XRD, and monoclinic ZrO2 increased on addition of Cr2O3. Maximum hardness was at Al2O3-10wt% Cr2O3 with 10 vol% ZrO2 and a stress-induced transformation was confirmed on the fracture surface of the specimen after the bending test.  相似文献   

4.
Multi-walled carbon nanotubes (MWCNTs) have been reinforced in alumina (Al2O3) matrix to overcome the inherent brittleness of the Al2O3 matrix. In this work, MWCNTs were treated by acid to provide hydrophilicity to hydrophobic MWCNTs, inducing the homogeneous dispersion of MWCNTs in an aqueous solution. Aluminum hydroxide (Al(OH)3) as a Al2O3 precursor was added in the solution with the modified MWCNTs, and then this mixture solution was filtered at room temperature. The prepared powders were calcinated at 800-1000 degrees C to reduce the gas pocket in the matrix by decomposition of Al(OH)3. Then the calcinated powders were formed, and heat-treated. The porous MWCNTs-Al2O3 composites show higher mechanical properties in flexure strength and hardness than the porous Al2O3 without the reinforcement phase, which is attributed to the high mechanical properties of MWCNTs. However, higher MWCNTs contents in the composites decrease the mechanical properties due to the aggregation of MWCNTs in the composites. Therefore, control of the MWCNTs content and its dispersibility in the matrix are key factors to be considered for the fabrication of the porous MWCNT-Al2O3 composites.  相似文献   

5.
The mechanical properties of metal matrix composites (MMCs) are critical to their potential application as structural materials. A systematic examination of the effect of particulate volume fraction on the mechanical properties of an Al2O3-Al MMC has been undertaken. The material used was a powder metallurgy processed AA 6061 matrix alloy reinforced with MICRAL-20, a polycrystalline microsphere reinforcement consisting of a mixture of alumina and mullite. The volume fraction of the reinforcement was varied systematically from 5 to 30% in 5% intervals. The powder metallurgy composites were extruded then heat treated to the T6 condition. Extruded liquid metallurgy processed AA 6061 was used to establish the properties of the unreinforced material.  相似文献   

6.
In ensuring the effective load transfer of carbon nanotubes (CNTs) reinforced copper (Cu)-based composites, good and stable interface contact is a key factor. Powder electrodeposition technology is used in the present study to coat silver (Ag) nanoparticles on CNTs for the first time. Subsequently, by ball milling and spark plasma sintering, uniform distribution of CNTs in the Cu matrix and tight Cu/C interface bonding are successfully achieved. It is found that Ag nanoparticles with a size of 5 nm are evenly embedded in the surface of CNTs. The results reveal that the agglomeration of CNTs is prevented by the addition of Ag nanoparticles and the adhesion between CNTs and Cu matrix is enhanced by the formation of coherent interface. Further, the load transfer of composite materials is effectively realized by the pinning effect of Ag particles on CNTs. The tensile strength, elongation, and conductivity of the 0.75 CNT-Ag/Cu samples were 314 MPa, 24.8%, and 93.6% IACS, respectively, which are 40.1%, 818%, and 3.3% higher than those of the CNT/Cu samples, respectively. The present method provides a new direction for the uniform coating powder materials and the synergistic strengthening of metal matrix composites.  相似文献   

7.
研究了CNTs的加入对Mg-9Al镁基复合材料时效行为的影响,探讨了时效处理过程中微观组织、力学性能及导热性能的演变规律。结果表明:添加的CNTs增大了基体合金中铝元素的固溶度,并在时效过程中限制晶界的迁移,在二者共同作用下,促进基体中连续β-Mg_(17)Al_(12)相的析出,且随着CNTs含量的增加,连续析出的比例增大;与基体呈共格关系的杆状连续析出相能够有效地阻碍位错运动,提高复合材料的力学性能,其中峰时效态0.4CNTs/Mg-9Al复合材料的屈服强度、抗拉强度、热扩散系数和热导率分别为275 MPa,369 MPa,34.5 mm^(2)/s和68.4 W/(m·K),相较于时效前Mg-9Al合金分别提升了17%,23%,43%和45%。  相似文献   

8.
In this study, Al2024 matrix composites reinforced with Al2O3 nanoparticle contents ranging from 1 to 5?wt% were produced via a new method called as flake powder metallurgy (FPM). The effect of flake size and Al2O3 nanoparticle content on the reinforcement distribution, microstructure, physical, and mechanical properties of the composites were studied. SEM analysis was performed to investigate the microstructure of metal matrix and the distribution of nanoparticles. The hot-pressed density increased with decreasing the matrix size. The hardness of the Al2024–Al2O3 nanocomposites fabricated by using fine matrix powders increased as compared to the Al2024–Al2O3 nanocomposites produced by using coarse matrix powders. It has been found that the FPM method proposed in this study revealed to be an effective method for the production of nanoparticle reinforced metal matrix composites.  相似文献   

9.
SiC-platelet reinforced Al2O3/SiC-particle nanocomposites were fabricated by hot-pressing the mixture through the conventional powder mixing process. The mechanical properties of Al2O3/SiC-particle/SiC-platelet hybrid composites were evaluated. Fracture toughness and work of fracture were increased by the incorporation of SiC-platelets into Al2O3/SiC-particle nanocomposites. The typical rising R-curve was shown during crack growth for these hybrid nanocomposites, whereas Al2O3/SiC-particle nanocomposites showed the constant K R value and no rising R-curve. The further improvement of Al2O3/SiC-particle nanocomposites in the creep resistance was observed by the addition of SiC platelets. The relationship between the microstructure and mechanical properties for Al2O3/SiC-particle/SiC-platelet hybrid composites was discussed.  相似文献   

10.
The room temperature mechanical properties of Al2O3 composites reinforced with 25 vol% of either MoSi2 or Nb particulates were investigated. It was found that addition of Nb particles resulted in a reduction in the elastic modulus, but caused a significant increase in both flexural strength and fracture toughness. On the other hand, the addition of MoSi2 particles resulted in only a marginal decrease in elastic modulus and marginal increase in both flexural strength and fracture toughness. The elastic modulus results were explained on the basis of Tsai - Halpin model. For both the composites, the increase in flexural strength was attributed to the grain refinement of the Al2O3 matrix as well as the load transfer to the reinforcement particles. The marginal increase in fracture toughness in Al2O3 / MoSi2 composites was attributed to crack deflection, whereas the threefold increase in fracture toughness in Al2O3 / Nb composites was attributed to crack blunting and bridging.  相似文献   

11.
12.
Aluminium (Al) matrix composites reinforced with either 0.5 wt% graphene oxide (GO) or 0.5 wt% carbon nanotubes (CNTs) were hot extruded from ball-milled powders. A control, pure Al bar was also fabricated. Microstructural examination, including Raman mapping, showed a relatively poor dispersion of the carbon nanomaterials within the Al matrix, particularly in the case of the CNTs. Consequently, while the mean grain size of the Al matrix remains invariant with the addition of CNTs, the Al/GO composite exhibits reduced grain size compared to pure Al due to the pinning effect of the reinforcement. Moreover, the addition of both carbonaceous materials resulted in a slight decrease in the typical extrusion duplex <111> + <100> fibre texture intensity. This weakening of the texture was more pronounced in the Al/GO composite, partly due to the pinning effect of the reinforcement. In agreement with their relative mean grain sizes, the Al/GO composite shows an improved mechanical performance over pure Al. Despite the similarity of the mean grain sizes, the Al/CNT composite displays comparable hardness and a decreased compressive yield stress relative to the pure Al. In the absence of chemical reactions at the interfaces, this was attributed to a low efficiency of load transfer from the Al matrix to the reinforcement resulting from the large extent of agglomeration of CNTs.  相似文献   

13.
Al2O3 matrix composites with unidirectionally oriented high-purity Al2O3 fibre with and without carbon coating, were fabricated by the filament-winding method, followed by hot-pressing at 1573–1773 K. The composite with non-coated Al2O3 fibre exhibited a bending strength (594 MPa) comparable to that of monolithic Al2O3 (589 MPa). While the composite with a carbon-coated fibre had lower strength (477 MPa), it showed improved fracture toughness (6.5 MPa m1/2) compared to the composite with an uncoated fibre (4.5 MPa m1/2) and monolithic Al2O3 (5.5 MPa m1/2). This toughness enhancement was explained based on the increased crack extension resistance caused by the fibre pull-out observed by SEM at the notch tip. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

14.
15.
The microstructure, phase distribution and hardness of TiCAl2O3 two-phase coatings prepared by high rate physical vapor deposition have been studied as functions of deposition temperature and feed composition. Structural analysis using X-ray diffraction shows that the coatings consist of α-Al2O3 and TiC (cubic) phases. Transmission and scanning electron microscopy have been used to study the distribution of the two phases in the coatings. The growth morphology is fine grained at low temperatures and becomes a dense columnar type at high temperatures of deposition. The microhardness shows a corresponding increase with deposition temperature. Details of the relationship between the microstructure, composition and hardness of the coatings are reported.  相似文献   

16.
17.
The tensile deformation and fracture behaviour of aluminium alloy 2014 discontinuously-reinforced with particulates of Al2O3 was studied with the primary objective of understanding the influence of reinforcement content on composite microstructure, tensile properties and quasi-static fracture behaviour. Results reveal that elastic modulus and strength of the metal-matrix composite increased with reinforcement content in the metal matrix. With increase in test temperature the elastic modulus showed a marginal decrease while the ductility exhibited significant improvement. The improved strength of the Al-Al2O3 composite is ascribed to the concurrent and mutually interactive influences of residual stresses generated due to intrinsic differences in thermal expansion coefficients between constituents of the composite, constrained plastic flow and triaxiality in the soft and ductile aluminium alloy matrix due to the presence of hard and brittle particulate reinforcements. Fracture on a microscopic scale initiated by cracking of the individual or agglomerates of Al2O3 particulates in the metal matrix and decohesion at the matrix-particle interfaces. Failure through cracking and decohesion at the interfaces increased with reinforcement content in the matrix. The kinetics of the fracture process is discussed in terms of applied far-field stress and intrinsic composite microstructural effects.  相似文献   

18.
The tensile properties, at both room and elevated temperatures, of laminated thin films containing alternate layers of aluminium and aluminium oxide were investigated. At room temperature the strength of the films followed a Hall-Petch type relationship dependent on the interlamellar spacing, and the strength could be extrapolated from data for conventional grain size aluminium. At the finest interlayer spacing of 50 nm, the strength was equivalent to/70, where is the shear strength of aluminium and the samples exhibited very extensive ductility. At elevated temperatures, cavitation became an important deformation mechanism but it occurred preferentially at Al/Al rather than Al/Al2O3 boundaries. The microstructure of the films was probed using transmission electron microscopy and fractography was used to investigate deformation and fracture mechanisms.  相似文献   

19.
采用SRV摩擦磨损试验机研究了球墨铸铁及三维网络Al2O3增强球墨铸铁基复合材料的干摩擦磨损性能,测量了球墨铸铁和复合材料在不同摩擦频率及载荷下的摩擦系数和磨损率;用扫描电镜观察磨损表面形貌,并分析了三维网络Al2O3对复合材料磨损机制的影响.结果表明:陶瓷与金属基体之间具有良好界面结合的三维网络Al2O3/球墨铸铁复合材料,其摩擦系数随载荷和摩擦频率的变化保持稳定;复合材料的耐磨性能远优于球墨铸铁,而且随着摩擦频率和载荷的增加,复合材料的抗磨损性能明显提高.这是由于复合材料中陶瓷与金属相之间三维空间结构和良好的界面结合有利于摩擦载荷的传递;金属基体中的石墨减摩作用保持摩擦系数的稳定;三维陶瓷骨架在磨损表面形成硬的微突体并起承载作用,制约了基体的塑性变形和高温软化,有利于磨损表面氧化膜的留存.  相似文献   

20.
Two-phase composites consisting of (1 – x) Al2O3 and xTi3SiC2 (x = 0–1) were prepared by spark plasma sintering (SPS). Sintered densities larger than 98% of theoretical density were achieved when the specimens were sintered at 1300°C for 5 min (in vacuum, at pressure 30 MPa). When content of Ti3SiC2 increased up to 30 wt%, composites were found to be machinable—they could be drilled easily using conventional Fe-Mo-W drills or gravers. The mechanical properties of the (1 – x) Al2O3xTi3SiC2 composites were evaluated. The bending strength, Vickers hardness of the specimens had the following ranges: 428 ± 10.2 (x = 0) to 673 ± 15.4 Mpa (x = 1) (bending strength at room temperature); 19.9 (x = 0) to 4.0 GPa (x = 1) (Vickers hardness).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号