首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the paper, we describe new Ir complexes for achieving efficient blue phosphorescence. New blue-emitting mixed-ligand Ir complexes comprising one cyclometalating, two phosphines trans to each other such as Ir(dppz)(PPh3)2(H)(L) (Ll= Cl, NCMe+, CN), [dppz = 3,5-Diphenylpyrazole] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To gain insight into the factors responsible for the emission color change and the variation of luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using DFT and TD-DFT calculations on the ground and excited states of the complexes. To achieve deep blue emission and increase the emission efficiency, (1) we substitute the phenyl group on the 3-position of the pyrazole ring that lowers the triplet energy enough that the quenching channel is not thermally accessible and (2) change the ancillary ligands coordinated to iridium atom to phosphine and cyano groups known as very strong field ligands. Their inclusion in the coordination sphere can increase the HOMO-LUMO gap to achieve the hypsochromic shift in emission color and lower the HOMO and LUMO energy level, which causes a large d-orbital energy splitting and avoids the quenching effect to improve the luminescence efficiency. The maximum emission spectra of Ir(dppz)(PPh3)2(H)(CI) and Ir(dppz)(PPh3)2(H)(CN) were in the ranges of 439, 432 nm, respectively.  相似文献   

2.
New blue emitting mixed ligand iridium(III) complexes comprising one cyclometalating, two phosphines trans to each other such as Ir(dppz)(PPhMe2)2(H)(C1) and Ir(dppz)(PPhMe2)2(H)(CN), [dppz = 3,5-Diphenylpyrazole] were studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To achieve deep blue emission and increase the emission efficiency, the following must occur: (1) substitution of phenyl group on the 3-position of the pyrazole ring that lower the triplet energy enough that the quenching channel is not thermally accessible, (2) changing ancillary ligands coordinated to iridium atom to phosphine and cyano groups known as very strong field ligands. Using the density functional theory (DFT) and time-dependent DFT method calculations on the ground and excited states of the complexes, we have studied how the ancillary ligand influences the emission peak as well as MLCT transition efficiency. It is showed that the strong-field ancillary ligand such as CN, PPhMe2 alters the energy gap mainly by changing the highest occupied molecular orbitals (HOMO) energy level. Their inclusion in the coordination sphere can increase the energy gap to achieve the hypsochromic shift in emission color and also lower the triplet energy level to avoid the thermal quenching.  相似文献   

3.
We report high-efficiency blue phosphorescence organic light-emitting devices by solution process utilizing a blue Ir(III) complex [(F2ppy)2Ir(ph-imz)CN] (F2ppy = 2',6' -difluoro-2-phenyl pyridine and ph-imz = N-phenyl imidazole) blended with the host mCP (N, N'-dicarbazolyl-3,5-benzene), and the inert polymers polystyrene (PS) and polymethylmethacrylate (PMMA). The effects of the dopant confinement in the PS and PMMA matrix on the device performance are studied by field emission transmission electron microscopy (FE-TEM) and atomic force microscopy (AFM). The complex shows photoluminescence peaked at 458 nm with CIE color coordinates (0.14, 0.21) in solution and (0.14, 0.18) in doped PMMA film. The PS based device showed better device performance than the PMMA based device with a maximum luminous efficiency of (etaL) 5.11 cd/A with CIE color coordinates (0.17, 0.29) (at 10 mA/cm2) and a maximum luminance of 9765 cd/m2.  相似文献   

4.
A series of mono-cyclometalated blue phosphorescent iridium(III) complexes with two phosphines trans to each other and two cis-ancillary ligands, such as Ir(F2Meppy)(PPhMe2)2(H)(Cl), [Ir(F2Meppy)(PPhMe2)2(H)(NCMe)]+ and Ir(F2Meppy)(PPhMe2)2-(H)(CN), [F2Meppy = 2-(2′,4′-difluorophenyl)-4-methyl-pyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. We investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the three complexes to gain insight into the factors responsible for the emission color change and the different luminescence efficiency. Reducing the molecular weight of phosphine ligand with PPhMe2 leads to a strategy of the efficient deep blue organic light-emitting devices (OLED) by thermal processing instead of the solution processing. The electron-withdrawing difluoro group substituted on the phenyl ring and the cyano strong field ancillary ligand in the trans position to the carbon atom of phenyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift in emission color. As a result, the maximum emission spectra of Ir(F2Meppy)(PPhMe2)2(H)(Cl), [Ir(F2Meppy)(PPhMe2)2(H)-(NCMe)]+ and Ir(F2Meppy)(PPh-Me2)2 (H)(CN) were in the ranges of 446, 440, 439 nm, respectively.  相似文献   

5.
In the present paper, an Ir(III) complex of Ir(PD)(PBT)2 was synthesized, where PD and PBT stand for pentane-2,4-dione and 2-phenylbenzo[d]thiazole, respectively. The molecular identity of Ir(PD)(PBT)2 was confirmed by its single crystal. It was found that Ir(PD)(PBT)2 belonged to monoclinic system with two molecules in each unit cell. Theoretical calculation on Ir(PD)(PBT)2 suggested that the onset electronic transitions owned a mixed character of metal-to-ligand-charge-transfer and ligand-to-ligand-charge-transfer. By doping this complex into a polymer matrix of poly(vinylpyrrolidone) (PVP), the photophysical features of the resulting composite fibers were discussed and compared with those of Ir(PD)(PBT)2 solution. It was found that the immobilization in PVP host could improve the photoluminescence performance by restraining the excited state geometric relaxation, showing higher emission energy, longer excited state lifetime and better photostability.  相似文献   

6.
Boron(III) complexes, BPh2(2-py-aza) and Bph2(2-py-in), are known as blue emitting materials. In this paper, we have studied various ligand effects of boron complex on the absorption (UV) and electroluminescence (EL) peaks computationally. To obtain optical properties, TD-DFT(B3LYP) methods are used with 6-31+G(d) basis set. It was found that EL peaks of those materials are calculated at 454 and 510 nm, which are considerably consistent with experimental data. From the results, we newly proposed two materials, BPh2(PBI-Me) and BPh2(PBI-Ph), as blue luminescent materials, whose calculated EL peaks are at 456 and 480 nm, respectively. Through the calculation results, newly designed compounds showed possibility as efficient and promising emitters in EL device.  相似文献   

7.
G.Y. Park  Y.K. Ha 《Thin solid films》2007,515(12):5090-5094
Ir(β) complexes of fluorinated dpqs(dpq-3-F, dpq-4-CF3) as a cyclometallated ligand were prepared and their photonic properties were investigated, where dpq-3-F and dpq-4-CF3 represent 2-(3-fluoro-phenyl)-4-phenylquinoline and 4-phenyl-2-(4-trifluoromethylphenyl)quinoline, respectively. Fluorinated dpq derivatives were introduced to the iridium complexes to increase the efficiency compared to Ir(dpq)2(acac) which was recently reported to have emission wavelength of 614 nm with quantum efficiency of 0.14. These fluorinated ligands and their Ir(III) complexes were computationally calculated by ab initio methods to support our experimental results. It was found that the Ir complex containing dpq-3-F ligands exhibits the largest emission efficiency with maximum emission peak at 593.5 nm. The result of ab initio calculation using the time-dependent density functional theory (TD-DFT) showed that the strong 3MLCT transition of the complex occurs due to the strong coupling between the 5d orbital of the Ir atom and the highest occupied molecular orbitals (HOMOs) of these ligands.  相似文献   

8.
A series of phosphorescent Ir(III) complexes 1-4 were synthesized based on aryl(6-arylpyridin-3-yl)methanone ligands, and their photophysical and electroluminescent properties were characterized. Multilayer devices with the configuration, Indium tin oxide/4,4′,4″-tris(N-(naphthalene-2-yl)-N-phenyl-amino)triphenylamine (60 nm)/4,4′-bis(N-(1-naphthyl)-N-phenylamino)biphenyl (20 nm)/Ir(III) complexes doped in N,N′-dicarbazolyl-4,4′-biphenyl (30 nm, 8%)/2,9-dimethyl-4,7-diphenyl-phenathroline (10 nm)/tris(8-hydroxyquinoline)-aluminum (20 nm)/lithium quinolate (2 nm)/ Al (100 nm), were fabricated. Among these, the device employing complex 2 as a dopant exhibited efficient red emission with a maximum luminance, luminous efficiency, power efficiency and quantum efficiency of 16200 cd/m2 at 14.0 V, 12.20 cd/A at 20 mA/cm2, 4.26 lm/W and 9.26% at 20 mA/cm2, respectively, with Commission Internationale de l'Énclairage coordinates of (0.63, 0.37) at 12.0 V.  相似文献   

9.
以2-甲基苯并噻唑、苯甲醛为原料,通过与三氯化铱配合,得到一种新型红色金属铱(Ⅲ) E-2-苯乙烯基苯并噻唑(SBT)乙酰丙酮(acac)配合物(SBT)2Ir(acac).通过质谱、核磁、红外光谱对其结构进行了表征,并对其光致发光性能进行了研究.研究结果表明:配合物(SBT)2 Ir(acac)在428和471nm处的紫外吸收属于单线态和三线态金属铱到配体的电荷转移吸收(1MLCT和3MLCT);在632nm处有强的金属配合物三线态磷光发射;(SBT)2Ir(acac)金属配合物的EHOMO=-4.8 eV,ELUMO=-2.5eV,磷光量子效率Φ (SBT)2Ir(acac) =0.19.(SBT)2Ir(acac)可能是一种极有潜力的电致磷光材料.  相似文献   

10.
The synthesis and luminescence of iridium(III) complexes containing new phenylpyridine (C(see test for symbol)N) ligands, 4-Me-4'-F-ppy, 4-Me-4'-CF3-ppy and 4-OMe-4'-CF3-ppy, were studied. These ligands were designed for development of the blue light-emitting iridium complexes by introducing the electron-withdrawing group (F, CF3) and the electron-donating group (Me, OMe) at the para positions of the phenyl and pyridine ligand rings, respectively. As an ancillary ligand, trzl-CMe3 was employed where trzl-CMe3 represents 2-(5-tert-butyl-2H-1,2,4-triazol-3-yl)pyridine. The resulting iridium complexes, Ir(4-Me-4'-F-ppy)2(trzl-CMe3), Ir(4-OMe-4'-CF3-ppy)2 (trzl-CMe3) and Ir(4-Me-4'-CF3-ppy)2(trzl-CMe3) exhibited the blue emission at 472, 484 and 494 nm in CH2Cl2 solution, respectively. Ir(4-Me-4'-F-ppy)2(trzl-CMe3) showed the most hypsochromic shift in photoluminescence (PL) among the complexes prepared herein. In the electroluminescence (EL) spectra, Ir(4-Me-4'-F-ppy)2(trzl-CMe3) and Ir(4-Me-4'-CF3-ppy)2(trzI-CMe3) exhibited the luminescence peak at 437 nm and 496 nm, respectively. In the aspect of blue emission color purity, Ir(4-Me-4'-F-ppy)2(trzl-CMe3) had the CIE coordinates of (0.176, 0.143), very close to the saturated standard blue emission.  相似文献   

11.
《Materials Letters》2005,59(24-25):3002-3006
The synthesis and luminescent study of a new iridium pyrazine complex are reported. The iridium complex [Ir(MDPP)2(acac)] (MDPP=5-methyl-2,3-diphenylpyrazine, acac=acetylacetone) shows strong 1MLCT (singlet metal-to-ligand charge-transfer) and 3MLCT (triplet metal to ligand charge-transfer) absorption at 386 and 507 nm, respectively. Organic light emitting device (OLED) with a configuration of ITO / NPB (30 nm) / NPB: 7% (wt.) Ir(MDPP)2(acac) (25 nm) / BCP (10 nm) / Alq3(30 nm) / Mg : Ag (mass ratio 10 : 1)120 nm / Ag(10 nm) exhibits an external quantum efficiency of 6.02% (power efficiency 9.89 lm W 1 ) and a maximum brightness of 78,924 cd m 2. The device also shows high color purity with a maximum peak at 576 nm without any shoulder.  相似文献   

12.
We have designed and synthesized four orange-red phosphorescent Ir(III) complexes based on the benzoylphenylpyridine ligand with fluorine and trifluoromethyl substitution. Multilayered OLEDs were fabricated using these complexes as dopant materials. Particularly, by using 1 as a dopant in the emitting layer, a highly efficient orange-red OLED was fabricated, showing a maximum luminance of 10410 cd/m2 at 10 V, a luminous efficiency of 17.47 cd/A, a power efficiency of 7.19 Im/W, an external quantum efficiency of 6.27% at 20 mA/cm2, respectively, and CIE(x,y) coordinates of (0.51, 0.48) at 10 V. Furthermore, a red OLED using dopant 2, with CIE(x,y) coordinates of (0.61, 0.39), exhibited a maximum luminance of 5797 cd/m2 at 10 V, a luminous efficiency of 11.43 cd/A at, a power efficiency of 4.12 Im/W, and an external quantum efficiency of 6.62% at 20 mA/cm2, respectively.  相似文献   

13.
《Optical Materials》2014,36(12):2357-2365
Lanthanide compounds of general formula [Ln2(2,5-tdc)3(dmf)2(H2O)2]·2dmf·H2O (Ln = Eu(III) (1), Tb(III) (2), Gd(III) (3) and Dy(III) (4), dmf = N,N′-dimethylformamide and 2,5-tdc2− = 2,5-thiophedicarboxylate anion) were synthesized and characterized by elemental analysis, X-ray powder diffraction patterns, thermogravimetric analysis and infrared spectroscopy. Phosphorescence data of Gd(III) complex showed that the triplet states (T1) of 2,5-tdc2− ligand have higher energy than the main emitting states of Eu(III), Tb(III) and Dy(III), indicating that 2,5-tdc2− ligand can act as intramolecular energy donor for these metal ions. An energy level diagram was used to establish the most relevant channels involved in the ligand-to-metal energy transfer. The high value of experimental intensity parameter Ω2 for the Eu(III) complex indicate that the europium ion is in a highly polarizable chemical environment. The emission quantum efficiency (η) of the 5D0 emitting level of Eu(III) was also determined. The complexes act as possible light conversion molecular devices (LCMDs).  相似文献   

14.
《Optical Materials》2005,27(2):187-191
A microwave synthetic method has been developed for novel electroluminescent Ir(III)-polypyridine complexes. The novel Ir(III)-polypyridine complexes give intensively multi-colored luminescence whose emission peaks are occurred ranging from 450 to 630 nm. The chemical properties and electroluminescence character of these Ir(III) complexes are studied. These Ir complexes exhibit red electrophosphorescence and they might be promising red emitting materials for EL devices.  相似文献   

15.
Synthesis and characterization of a series of square planar Pt(II)-phenylpyridazine complexes are reported. The complexes have the general structure of (C–N)Pt(O–O), where HC–N is 3-phenyl-pyridazine (ppdz), 3-(3′-trifluoromethylphenyl)pyridazine (3′tfmppdz), 3-(3′-methoxyphenyl)-pyridazine (3′meoppdz), 3-(4′-methoxyphenyl)pyridazine (4′meoppdz), or 3-phenyl-6-chloro-pyridazine (6Clppdz) and HO–O is acetylacetone (Hacac). Reaction of K2PtCl4 with a HC–N ligand forms the dimer, (C–N)Pt(μ-Cl)2Pt(C–N), which is cleaved with Hacac to give the corresponding monomer, (C–N)Pt(O–O). The emission characteristics of these complexes are governed by the substituents of the cyclometalating ligands, showing emission λmax values from 508 to 610 nm. Strong spin-orbit coupling of the platinum atom allows for the formally forbidden mixing of the 1MLCT with the 3MCLT and 3(ππ*) states.  相似文献   

16.
Lanthanide complexes with N-(diphenylphosphoryl)-4-methylbenzenesulfonamide (HPMSP) as new sensitizers of visible luminescence were obtained. The series of stable lanthanide complexes Na[Ln(PMSP)4], where Ln = Eu3+, Gd3+, Tb3+ were characterized by X-ray diffraction, IR, absorption, emission, and excitation spectra at 295 and 77 K as well as luminescence decay times and intrinsic emission quantum yields. The Tb complex, exhibiting relatively efficient ligand-to-metal energy transfer and strong metal-centred emission, is a promising candidate for effective UV-to-visible energy converters. Temperature dependent quenching of sensitized 5D0 europium emission and presence of 5D1 emission are discussed.  相似文献   

17.
Complexes of Fe(II) and Fe(III) with N2O3 hydrazone ligand (SBSH) derived from salicyaldehyde and benzenesulphonylhydrazide have been encapsulated in zeolite Y-supercages by a diffusion method. The synthesized new materials have been characterized by combination of elemental analysis, FT-IR, UV–Vis., magnetic measurements, XRD, thermal analysis (TG, DTG and DTA) as well as surface area measurements and nitrogen adsorption studies. Additionally, the state of iron was evaluated by the use of Mössbauer spectroscopy at room temperature. Investigation of the stereochemistry of these incorporated chelates pointed out that, Fe(II) and Fe(III) ions in zeolite Y are coordinated with the SBSH ligand through the (CN), (SO2) and (OH) groups forming mononuclear structure in case of Fe(II) complex and binuclear structure in case of Fe(III) complex. The contribution of the water molecules in all cases was supposed to complete the coordination sphere. The intrazeolitic ferrous and ferric hydrazone complexes have distorted octahedral configuration and are thermally stable up to 543 and 900 °C, respectively.  相似文献   

18.
Young Hee Lee 《Thin solid films》2007,515(12):5079-5083
In this study, Ir(III) complex with 4,6-diphenylquinazoline (DPQN) was designed and characterized theoretically. The Hartree-Fock (HF) method with the 3-21G(d) basis set and density functional theory (DFT) utilizing the B3LYP functional with the 6-31G(d) basis set were used for the geometry optimization and the energy level calculation of the ground state of these complexes, respectively. Excited triplet and singlet states are examined using the time-dependent density functional theory (TD-DFT). As a result, it was found that these complexes produced a deep red emission due to the elongated conjugation length. The Ir(III) complex with DPQN ligands exhibits the large emission efficiency and emits light of the deep red wavelength.  相似文献   

19.
Organic light-emitting device (OLED) was fabricated using the novel red phosphorescent heteroleptic tris-cyclometalated iridium complex, bis(2-phenylpyridine)iridium(III)[2(5′-methylphenyl)-4-diphenylquinoline] [Ir(ppy)2(dpq-5CH3)], based on 2-phenylpyridine (ppy) and 2(5′-methylphenyl)-4-diphenylquinoline (dpq-5CH3) ligand. Generally, the ppy ligand in heteroleptic iridium complexes plays an important role as “sensitizer” in the efficient energy transfer from the host (CBP; 4,4,N,N′-dicarbazolebiphenyl) to the luminescent ligand (dpq-5CH3). We demonstrated that high efficiency through the “sensitizer” can be obtained, when the T1 of the emitting ligand is close to T1 of the sensitizing ligand. The device containing Ir(ppy)2(dpq-5CH3) produced red light emission of 614 nm with maximum luminescence efficiency and power efficiency of 8.29 cd/A (at 0.09 mA/cm2) and 5.79 lm/W (at 0.09 mA/cm2), respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号