首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most recent information on the occurrence of Fusarium Head Blight species and related mycotoxins in wheat grown in the Netherlands dates from 2001. This aim of this study was to investigate the incidence and levels of Fusarium Head Blight species and Fusarium mycotoxins, as well as their possible relationships, in winter wheat cultivated in the Netherlands in 2009. Samples were collected from individual fields of 88 commercial wheat growers. Samples were collected at harvest from 86 fields, and 2 weeks before the expected harvest date from 21 fields. In all, 128 samples, the levels of each of seven Fusarium Head Blight species and of 12 related mycotoxins were quantified. The results showed that F. graminearum was the most frequently observed species at harvest, followed by F. avenaceum and M. nivale. In the pre-harvest samples, only F. graminearum and M. nivale were relevant. The highest incidence and concentrations of mycotoxins were found for deoxynivalenol, followed by zearalenone and beauvericin, both pre-harvest and at harvest. Other toxins frequently found – for the first time in the Netherlands – included T-2 toxin, HT-2 toxin, and moniliformin. The levels of deoxynivalenol were positively related to F. graminearum levels, as well as to zearalenone levels. Other relationships could not be established. The current approach taken in collecting wheat samples and quantifying the presence of Fusarium Head Blight species and related mycotoxins is an efficient method to obtain insight into the occurrence of these species and toxins in wheat grown under natural environmental conditions. It is recommended that this survey be repeated for several years to establish inter-annual variability in both species composition and mycotoxin occurrence.  相似文献   

2.
The predominant species in maize in temperate climates is Fusarium graminearum, which produces the mycotoxins deoxynivalenol and zearalenone. Projected climate change is expected to affect Fusarium incidence and thus the occurrence of these mycotoxins. Predictive models may be helpful in determining trends in the levels of these mycotoxins with expected changing climatic conditions. The aim of this study was to develop a model describing fungal infection and subsequent growth as well as the formation of deoxynivalenol and zearalenone in maize in The Netherlands. For this purpose, a published Italian model was used as a starting point. This model is a mixed empiric-mechanistic model that describes fungal infection during silking (based on wind speed and rainfall) and subsequent germination, growth and toxin formation (depending on temperature and water availability). Model input uses weather parameters and crop management factors, such as maize hybrid, sowing date, flowering period and harvest date. Model parameter values were obtained by fitting these parameters to deoxynivalenol and zearalenone measurements in Dutch maize, using national mycotoxin data from the years 2002-2007. The results showed that the adapted model is capable of describing the trend in average deoxynivalenol and zearalenone levels over these years. Validation with external data is needed to verify model outcomes. It is expected that the current model can be used to estimate the effect of projected climate change on trends in deoxynivalenol and zearalenone levels in the coming years.  相似文献   

3.
A total of 602 samples of organically and conventionally grown barley, oats and wheat was collected at grain harvest during 2002-2004 in Norway. Organic and conventional samples were comparable pairs regarding cereal species, growing site and harvest time, and were analysed for Fusarium mould and mycotoxins. Agronomic and climatic factors explained 10-30% of the variation in Fusarium species and mycotoxins. Significantly lower Fusarium infestation and concentrations of important mycotoxins were found in the organic cereals. The mycotoxins deoxynivalenol (DON) and HT-2 toxin (HT-2) constitute the main risk for human and animal health in Norwegian cereals. The impacts of various agronomic and climatic factors on DON and HT-2 as well as on their main producers F. graminearum and F. langsethiae and on total Fusarium were tested by multivariate statistics. Crop rotation with non-cereals was found to reduce all investigated characteristics significantly--mycotoxin concentrations as well as various Fusarium infestations. No use of mineral fertilisers and herbicides was also found to decrease F. graminearum, whereas lodged fields increased the occurrence of this species. No use of herbicides was also found to decrease F. langsethiae, but for this species the occurrence was lower in lodged fields. Total Fusarium infestation was decreased with no use of fungicides or mineral fertilisers, and with crop rotation, as well as by using herbicides and increased by lodged fields. Clay and to some extent silty soils seemed to reduce F. graminearum in comparison with sandy soils. Concerning climate factors, low temperature before grain harvest was found to increase DON; and high air humidity before harvest to increase HT-2. F. graminearum was negatively correlated with precipitation in July but correlated with air humidity before harvest. F. langsethiae was correlated with temperature in July. Total Fusarium increased with increasing precipitation in July. Organic cereal farmers have fewer cereal intense rotations than conventional farmers. Further, organic farmers do not apply mineral fertiliser or pesticides (fungicides, herbicides or insecticides), and have less problem with lodged fields. The study showed that these agronomic factors were related to the infestation of Fusarium species and the concentration of mycotoxins. Hence, it is reasonable to conclude that farming system (organic versus conventional) impacts Fusarium infestation, and that organic management tends to reduce Fusarium and mycotoxins. However, Fusarium infestation and mycotoxin concentrations may be influenced by a range of factors not studied here, such as local topography and more local climate, as well as cereal species and variety.  相似文献   

4.
Twenty samples of maize collected from healthy growing crops and at harvest time and during storage were screened for four Fusarium toxins (deoxynivalenol, diacetoxyscirpenol, T-2 toxin and zearalenone) by gas chromatography-mass spectrometry and thin-layer chromatography. Seventeen samples (85%) contained one or more of these toxins. Zearalenone was present in 15 samples at levels ranging between 0.1 and 16 ppm. Deoxynivalenol, diacetoxyscirpenol and T-2 toxin were found in 11, 6 and 13 samples respectively, all at levels below 1 ppm. This work documents the first reported natural occurrence of Fusarium toxins in New Zealand maize, and it is concluded that all four of the mycotoxins studied are prevalent in apparently healthy standing crops as well as in stored maize.  相似文献   

5.
Argentina is the fourth largest exporter of wheat in the world. The main pathogen associated with Fusarium Head Blight (FHB) of wheat in Argentina is Fusarium graminearum lineage 7 also termed F. graminearum sensu stricto in the F. graminearum species complex, which can produce the Type B trichothecenes, usually deoxynivalenol (DON) and its acetylated forms (3-ADON and 15-ADON) or nivalenol (NIV). We used a multiplex PCR assay of Tri3, Tri7, and Tri13 to determine the trichothecene genotype of 116 strains F. graminearum collected from three locations in Argentina and then verified the chemotype by chemical analysis. PCR assays and chemical analyses gave the same results for all strains that produced trichothecenes. Most strains (> 92%) had the 15-ADON genotype, with the remaining strains having the DON/NIV genotype. We observed neither the NIV nor the 3-ADON genotypes amongst the strains evaluated. The nine strains with the DON/NIV genotype produced DON when analyzed chemically. Thus, the Argentinean populations of F. graminearum are similar to those from wheat elsewhere in the world, in that all the strains produced DON/15-ADON and belong to lineage 7. However approximately 8% of the strains tested were incorrectly diagnosed as DON/NIV producers with the current multiplex PCR and were only DON producers by chemical analysis.  相似文献   

6.
Mycotoxins are secondary metabolites produced by fungi that can cause adverse health effects. Due to climate change, temperatures are expected to rise and changes in rainfall patterns are foreseen. These developments may increase fungal occurrence and mycotoxin concentrations in maize. It is therefore useful to monitor mycotoxin levels in maize and record the accompanying agronomic factors and weather parameters. This paper describes a field survey in the Netherlands in which information on soil, cultivar, green manure, tillage as well as sowing, emergence, flowering and harvest dates of silage maize were collected from 148 growers. A small number of these growers (42 in total) were visited to collect maize samples revealing that 50% of the samples were contaminated with Fusarium species and mycotoxins were detected in 25% of the samples. The Fusarium species that was most commonly found was F. crookwellense followed by F. graminearum, F. culmorum, F. sporotrichiodes and F. equiseti. In total 31 mycotoxins were analysed. The predominant mycotoxins present were (sum of 3 and 15)-acetyl-DON and nivalenol; other mycotoxins found were alternariol, beauvericin, deoxynivalenol, diacetoxyscirpenol, moniliformin and zearalenone. Nivalenol was present in concentrations up to 1670?μg?kg(-1) and acetylated DON was usually present at higher concentrations than DON. Statistical analysis of the current data showed no correlation between mycotoxins present and agronomic factors recorded. Field studies as described in this paper are useful and need to be continued in the future in order to observe trends in mycotoxin occurrence.  相似文献   

7.
In South-Eastern region of Poland (near Lublin), where frequency of scab (fusariosis) is much higher than in other parts of the country, during harvest of 1993 kernels of 25 winter wheat cultivars were collected. On the basis of morphological studies Fusarium graminearum was found in 42% of investigated samples while other fungi appeared less frequently: F. nivale and F. poae (35%), F. avenaceum (31%) and F. culmorum (12%). Chemical analysis (by HPLC) revealed that the tested cultivars were contaminated with deoxynivalenol (96% of investigated samples), its acetyl derivatives (48%), nivalenol (76%) and moniliformin (28%). The average levels of the metabolite concentrations were as follows: 104; 16; 97; and 63 micrograms/kg, respectively. Co-occurrence of 2 toxic metabolites was found in the following percentage of the positive samples: deoxynivalenol and nivalenol (72%), deoxynivalenol and moniliformin, as well as nivalenol and moniliformin (24%). Usually (71-83% of contaminated samples) mycotoxins were accumulated in the concentration range > or = 10, < 100 micrograms/kg.  相似文献   

8.
禾谷镰刀菌在侵染谷物过程中所产生的次生代谢产物——单端孢霉烯族毒素[脱氧雪腐镰刀菌烯醇(deoxynivalenol, DON)、雪腐镰刀菌烯醇(nivalenol, NIV)]以及玉米赤霉烯酮(zearalenone, ZEA)是世界上粮食安全的一个重大问题。毒素经固液萃取技术提取后, 需要通过净化处理才能进行检测与分析。目前有多种净化技术用于毒素的净化, 如免疫亲和柱、多功能净化柱等固相萃取柱等, 以及广泛使用且简便经济的QuEChERS前处理技术。本文还介绍了禾谷镰刀菌毒素中DON、ZEA的检测方法、产毒条件、毒性以及生物脱毒技术等方面的研究进展, 旨在开发与应用更安全、高效、经济的生物脱毒技术进行毒素的防御与去除, 以提供安全、优质的粮食与食品。  相似文献   

9.
裴世春  李妍  高建伟  王岩  王琳  韩基东 《食品科学》2018,39(10):312-317
为筛选东北地区采收期小麦、玉米和水稻中的真菌毒素产毒菌,以酶联免疫吸附测定、超高效液相色谱-串联质谱联用技术和聚合酶链式反应为分析工具,通过真菌分离、液体培养、产毒菌初筛、产毒性定性分析和分离菌的基因序列比对,筛选出产玉米赤霉烯酮、呕吐毒素和伏马毒素的产毒菌6?株,经DNA分析鉴定,分别属于Fusarium asiaticum、F. poae、F. graminearum和F. fujikuroi 4?种真菌。本实验结果为我国针对性的防控粮食中产毒性真菌污染提供了基础性实验数据。  相似文献   

10.
Epidemiology of Fusarium head blight on small-grain cereals   总被引:1,自引:0,他引:1  
Fusarium head blight (FHB) is one of the most serious diseases affecting wheat and barley worldwide. It is caused by Fusarium graminearum along with F. culmorum, F. avenaceum and other related fungi. These fungi also produce several mycotoxins. Though the disease results in reduced seed quality and yield, the toxins which may accompany the disease are often a more serious problem. Pathogen inoculum is usually very abundant, however production and dispersal of inoculum are weather-sensitive processes. An abundance of colonized substrate (i.e. maize or cereal debris) in a region contributes to airborne inoculum throughout the area. Local residues beneath the cereal crop (i.e. from previous crop) may have a less obvious effect, particularly in regions where long-distance dispersal is likely due to wind conditions. The host is most susceptible to infection at anthesis and shortly thereafter. A warm, moist environment characterized by frequent precipitation or heavy dew is highly favorable to fungal growth, infection and development of disease in head tissues. As the fungus grows, it produces mycotoxins which are water-soluble and may be translocated between tissues or leeched from source tissues. Important epidemiological issues have arisen recently and include an apparent shift in prevalence of Fusarium species on infected heads in Europe toward F. graminearum; and the presence of multiple chemotypes and aggressiveness variants within a species in a region.  相似文献   

11.
Zearalenone (ZEA) is a mycotoxin produced by some species of Fusarium, especially by Fusarium graminearum and F. culmorum. ZEA induces hyperoestrogenic responses in mammals and can result in reproductive disorders in farm animals. In the present study, a real-time PCR (qPCR) assay has been successfully developed for the detection and quantification of Fusarium graminearum based on primers targeting the gene PKS13 involved in ZEA biosynthesis. A standard curve was developed by plotting the logarithm of known concentrations of F. graminearum DNA against the cycle threshold (Ct) value. The developed real time PCR system was also used to analyze the occurrence of zearalenone producing F. graminearum strains on maize. In this context, DNA extractions were performed from thirty-two maize samples, and subjected to real time PCR. Maize samples also were analyzed for zearalenone content by HPLC. F. graminearum DNA content (pg DNA/ mg of maize) was then plotted against ZEA content (ppb) in maize samples. The regression curve showed a positive and good correlation (R2=0.760) allowing for the estimation of the potential risk from ZEA contamination. Consequently, this work offers a quick alternative to conventional methods of ZEA quantification and mycological detection and quantification of F. graminearum in maize.  相似文献   

12.
Fusarium head blight (FHB) is among the major causes of reduced quality in winter wheat and its products. In addition, the causal fungi produce a variety of toxins. A relatively high FHB infection rate in winter wheat was observed in 2007 and 2008 in Luxembourg. A fusariotoxin survey was carried out in 17 different geographical locations. Three groups of Fusarium mycotoxins (trichothecenes A and B and zearalenone) were analysed by a multi-detection HPLC–MS/MS method. Fusarium strains were also investigated by morphological and molecular methods. In addition, questionnaires relating to cultural practices were sent to the farmers managing the 17 fields investigated. FHB prevalence ranged from 0.3 to 65.8% (mean: 8.5%) in 2007 and from 0 to 24.5% (mean: 8.3%) in 2008. Results of morphological and molecular identification showed that the most common species isolated from diseased wheat spikes was F. graminearum (33.1%), followed by F. avenaceum (20.3%) and F. poae (17.8%). The chemical analysis revealed that 75% of the investigated fields were contaminated by deoxynivalenol (DON, range 0–8111 µg/kg). The preceding crop was highly and significantly correlated to the number of grains infected and had a significant impact on disease prevalence (p = 0.025 and 0.017, respectively, Fisher's F-test). A trend was found for maize as the preceding crop (p = 0.084, Tukey's test) to predict the amount of DON in the fields. This is the first report on the occurrence of DON and ZON in naturally infected wheat grains sampled from Luxembourg.  相似文献   

13.
Soybean (Glycine max L.), the main source of protein throughout the world, is used both as a food and a feedstuff. Currently, limited information about the occurrence of Fusarium species and mycotoxins in soybean grain and by-products is available. The aims of the present study were: (1) to identify toxigenic Fusarium species associated with soybean during crop reproductive stages; (2) to determine the occurrence of deoxynivalenol (DON) and nivalenol (NIV) in soybean seeds; (3) to determine the genotype and chemotype of selected Fg complex strains using molecular and chemical analysis, respectively; and (4) to characterize the strains using AFLP(s) markers. One soybean field located at Córdoba Province, Argentina, was monitored and samples of soybean tissue were harvested at three reproductive stages: flowering (R2), full seed (R6) and full maturity (R8). A total of 389 Fusarium strains F. equiseti (40%) was the most frequently species recovered followed by F. semitectum (27%) and F. graminearum (Fg) (11%). From the 40 soybean samples analysed, only two presented detectable DON levels. Based on DON occurrence on soybean seeds at ripening stages, the toxigenic ability of Fg complex strains isolated from soybean seeds, pods and flowers were analysed. The trichothecene genotype was determined by a multiplex PCR using primers based on Tri3, Tri5 and Tri7 toxin genes and then the chemotype was verified by chemical analysis. Most Fg complex strains showed 15-ADON genotype and five strains presented a DON/NIV; these also produced both toxins under in vitro culture. Neither the NIV nor the 3-ADON genotypes were detected among the members of the population evaluated. All the 15-ADON genotype strains were characterized as F. graminearum sensu stricto (lineage 7), while the strains presented a DON/NIV genotype were characterized as F. meridionale (lineage 2). The present study contributes new information on the occurrence of Fusarium species and trichothecenes toxins on soybean at the pre-harvest stages. Also, this is the first report on the chemotype, genotype and lineages among Fg complex isolated from soybean.  相似文献   

14.
The Fusarium mycotoxins deoxynivalenol (DON), zearalenone (ZEN) and T-2 frequently contaminate grain crops in Middle and Eastern Europe. In this survey, 116 cereal samples (maize, wheat, barley and oat) were examined for DON, ZEN and T-2 mycotoxins. Samples were collected from different areas in two Hungarian regions (North and South Transdanubia). The method of analysis was indirect competitive ELISA. Maize was the most contaminated grain regarding DON (86%), ZEN (41%) and T-2 (55%) toxins. The average results of the deoxynivalenol and zearalenone tests of maize proved to be significantly higher than those of barley or oat. DON was the most represented Fusarium mycotoxin followed by T-2 and ZEN. The examination of these mycotoxins would be necessary at a larger scale as to re-evaluate permissible levels, so increase of the monitoring programme would be advisable for the future.  相似文献   

15.
Corn cultures (five isolates each of Fusarium graminearum Group 1 from wheat crowns, Group 2 from scabby wheat grains and from ear rot of corn and five isolates of F. crookwellense) were screened for their ability to produce deoxynivalenol (DON), nivalenol (NIV), fusarenon-x (FUS-X) and zearalenone (ZEA). Nine of the ten F. graminearum isolates from wheat produced DON (5-165 micrograms g-1) but none produced either NIV or FUS-X. Conversely, 3/5 and 2/5 of the F. graminearum isolates from corn produced NIV (5-40 micrograms g-1) and FUS-X (5-7 micrograms g-1), respectively, while none produced DON. All but one of the F. graminearum isolates produced ZEA (2-1160 micrograms g-1). None of the F. crookwellense isolates produced DON, but 5/5 and 4/5 produced NIV (6-170 micrograms g-1) and FUS-X (3-90 micrograms g-1), respectively, and all produced ZEA (605-1030 micrograms g-1). The results confirmed previous findings on the presence of two distinct F. graminearum chemotypes.  相似文献   

16.
小麦是全球第二大粮食作物,每年因病害造成小麦严重减产,品质下降。一些病原菌还能够产生真菌毒素,进一步危害小麦及其制品的质量安全,对人畜健康造成巨大危害。由镰刀菌引起的小麦赤霉病是我国最主要的小麦病害之一,由交链孢引起的小麦黑胚病也备受关注。这2种真菌既能引起小麦病害,又能产生真菌毒素,故称之为产毒病害。镰刀菌产生的脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)、玉米赤霉烯酮(zearalenone,ZEN)、伏马菌素等和交链孢产生的交链孢酚(alternariol,AOH)、交链孢酚单甲醚(alternariol monomethyl ether,AME)和细交链格孢酮酸(tenuazonic acid,Te A)等是2类病原菌产生的主要真菌毒素。本文综述了能引起小麦产毒病害的镰刀菌和交链孢的特点、真菌毒素以及病害和毒素的防控技术,尤其是2类病原菌引起的小麦病害和真菌毒素的防控。这将为后期防治小麦产毒病害及控制毒素产生的研究提供有利参考。  相似文献   

17.
This study aimed to investigate mycotoxin contamination of cereal grain commodities for feed and food production in North Western Europe during the last two decades, including trends over time and co-occurrence between toxins, and to assess possible effects of climate on the presence of mycotoxins. For these aims, analytical results related to mycotoxin contamination of cereal grain commodities, collected in the course of national monitoring programmes in Finland, Sweden, Norway and the Netherlands during a 20-year period, were gathered. Historical observational weather data, including daily relative humidity, rainfall and temperature, were obtained from each of these four countries. In total 6382 records, referring to individual sample results for mycotoxin concentrations (one or more toxins) in cereal grains were available. Most records referred to wheat, barley, maize and oats. The most frequently analysed mycotoxins were deoxynivalenol, 3-acetyl-deoxynivalenol, nivalenol, T-2 toxin, HT-2 toxin and zearalenone. Deoxynivalenol had the highest overall incidence of 46%, and was mainly found in wheat, maize and oats. Mycotoxins that showed co-occurrence were: deoxynivalenol and 3-acetyl-deoxynivalenol in oats; deoxynivalenol and zearalenone in maize and wheat; and T-2 toxin and HT-2 toxin in oats. The presence of both deoxynivalenol and zearalenone in wheat increased with higher temperatures, relative humidity and rainfall during cultivation, but the presence of nivalenol was negatively associated with most of these climatic factors. The same holds for both nivalenol and deoxynivalenol in oats. This implies that climatic conditions that are conducive for one toxin may have a decreasing effect on the other. The presence of HT-2 toxin in oats showed a slight decreasing trends over time, but significant trends for other toxins showed an increasing presence during the last two decades. It is therefore useful to continue monitoring of mycotoxins. Obtained results can be used for development of predictive models for presence of mycotoxins in cereal grains.  相似文献   

18.
镰刀属真菌毒素是非常重要的一类真菌毒素,其种类繁多,污染率高,性质差异大,毒性也较强。本综述总结了较为常见的28种镰刀属真菌毒素(T-2毒素、HT-2毒素、蛇形毒素、新茄病镰刀菌烯醇、雪腐镰刀菌烯醇、脱氧雪腐镰刀菌烯醇、镰刀菌烯酮、玉米赤霉烯酮、伏马毒素B_1、B_2、B_3、串珠镰刀菌素、白僵菌素以及恩镰孢菌素等)近40年来体内、体外毒性研究资料,主要涵盖急性毒性、慢性毒性的致癌性、生长生殖毒性、致突变和基因毒性、免疫毒性、神经毒性、细胞毒性及血液毒性。同时对伏马毒素B_1、脱氧雪腐镰刀菌烯醇及其他几种常见毒素间的协同毒性作用进行概述。体内毒性实验研究中主要采用口服和腹腔注射的给药方式;而最常用的实验动物为鸡、小鼠、大鼠和猪。体外毒性实验研究用细胞为:鼠伤寒沙门氏菌菌株、人类巨核红细胞祖细胞以及动物肾脏上皮细胞等。对此类真菌毒素毒性的总结,可进一步加深对毒素的认识,并为食品、饲料及中药安全性方面相关的法律法规制订提供重要依据。  相似文献   

19.
Each year (2001–2005), 300 samples of wheat from fields of known agronomy were analysed for ten trichothecenes by gas chromatography-mass spectrometry (GC/MS) including deoxynivalenol (DON), nivalenol, 3-acetyl-DON, 15-acetyl-DON, fusarenone X, T2 toxin, HT2 toxin, diacetoxyscirpenol, neosolaniol and T-2 triol and zearalenone by high-performance liquid chromatography (HPLC). Of the eleven mycotoxins analysed from 1624 harvest samples of wheat, only eight were detected, and of these only five–deoxynivalenol, 15-acetyl-DON, nivalenol, HT-2 and zearalenone–were detected above 100 µg kg?1. DON was the most frequently detected Fusarium mycotoxin, present above the limit of quantification (10 µg kg?1) in 86% of samples, and was usually present at the highest concentration. The percentage of samples that would have exceeded the recently introduced legal limits varied between 0.4% and 11.3% over the five-year period. There was a good correlation between DON and zearalenone concentrations, although the relative concentration of DON and zearalenone fluctuated between years. Year and region had a significant effect on all mycotoxins analysed. There was no significant difference in the DON concentration of organic and conventional samples. There was also no significant difference in the concentration of zearalenone between organic and conventional samples, however organic samples did have a significantly lower concentration of HT2 and T2. Overall, the risk of UK wheat exceeding the newly introduced legal limits for Fusarium mycotoxins in cereals intended for human consumption is low, but the percentage of samples above these limits will fluctuate between years.  相似文献   

20.
A total of 602 samples of organically and conventionally grown barley, oats and wheat was collected at grain harvest during 2002–2004 in Norway. Organic and conventional samples were comparable pairs regarding cereal species, growing site and harvest time, and were analysed for Fusarium mould and mycotoxins. Agronomic and climatic factors explained 10–30% of the variation in Fusarium species and mycotoxins. Significantly lower Fusarium infestation and concentrations of important mycotoxins were found in the organic cereals. The mycotoxins deoxynivalenol (DON) and HT-2 toxin (HT-2) constitute the main risk for human and animal health in Norwegian cereals. The impacts of various agronomic and climatic factors on DON and HT-2 as well as on their main producers F. graminearum and F. langsethiae and on total Fusarium were tested by multivariate statistics. Crop rotation with non-cereals was found to reduce all investigated characteristics significantly – mycotoxin concentrations as well as various Fusarium infestations. No use of mineral fertilisers and herbicides was also found to decrease F. graminearum, whereas lodged fields increased the occurrence of this species. No use of herbicides was also found to decrease F. langsethiae, but for this species the occurrence was lower in lodged fields. Total Fusarium infestation was decreased with no use of fungicides or mineral fertilisers, and with crop rotation, as well as by using herbicides and increased by lodged fields. Clay and to some extent silty soils seemed to reduce F. graminearum in comparison with sandy soils. Concerning climate factors, low temperature before grain harvest was found to increase DON; and high air humidity before harvest to increase HT-2. F. graminearum was negatively correlated with precipitation in July but correlated with air humidity before harvest. F. langsethiae was correlated with temperature in July. Total Fusarium increased with increasing precipitation in July. Organic cereal farmers have fewer cereal intense rotations than conventional farmers. Further, organic farmers do not apply mineral fertiliser or pesticides (fungicides, herbicides or insecticides), and have less problem with lodged fields. The study showed that these agronomic factors were related to the infestation of Fusarium species and the concentration of mycotoxins. Hence, it is reasonable to conclude that farming system (organic versus conventional) impacts Fusarium infestation, and that organic management tends to reduce Fusarium and mycotoxins. However, Fusarium infestation and mycotoxin concentrations may be influenced by a range of factors not studied here, such as local topography and more local climate, as well as cereal species and variety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号