首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Most recent information on the occurrence of Fusarium Head Blight species and related mycotoxins in wheat grown in the Netherlands dates from 2001. This aim of this study was to investigate the incidence and levels of Fusarium Head Blight species and Fusarium mycotoxins, as well as their possible relationships, in winter wheat cultivated in the Netherlands in 2009. Samples were collected from individual fields of 88 commercial wheat growers. Samples were collected at harvest from 86 fields, and 2 weeks before the expected harvest date from 21 fields. In all, 128 samples, the levels of each of seven Fusarium Head Blight species and of 12 related mycotoxins were quantified. The results showed that F. graminearum was the most frequently observed species at harvest, followed by F. avenaceum and M. nivale. In the pre-harvest samples, only F. graminearum and M. nivale were relevant. The highest incidence and concentrations of mycotoxins were found for deoxynivalenol, followed by zearalenone and beauvericin, both pre-harvest and at harvest. Other toxins frequently found – for the first time in the Netherlands – included T-2 toxin, HT-2 toxin, and moniliformin. The levels of deoxynivalenol were positively related to F. graminearum levels, as well as to zearalenone levels. Other relationships could not be established. The current approach taken in collecting wheat samples and quantifying the presence of Fusarium Head Blight species and related mycotoxins is an efficient method to obtain insight into the occurrence of these species and toxins in wheat grown under natural environmental conditions. It is recommended that this survey be repeated for several years to establish inter-annual variability in both species composition and mycotoxin occurrence.  相似文献   

2.
The occurrence of mycotoxins in 140 maize silages, 120 grass silages and 30 wheat silages produced in the Netherlands between 2002 and 2004 was determined using a liquid chromatography coupled with tandem mass spectrometry detection (LC-MS/MS) multi-method. Deoxynivalenol (DON) was detected above the limit of quantification (LOQ) of 250 μg kg?1 in 72% of maize and 10% of wheat silages. Average DON concentrations were 854 and 621 μg kg?1, respectively, and maximum concentrations 3142 and 1165 μg kg?1, respectively. Zearalenone was detected above the LOQ of 25 μg kg?1 in 49% of maize and 6% of grass silages. Average zearalenone concentrations were 174 and 93 μg kg?1, respectively, and maximum concentrations 943 and 308 μg kg?1, respectively. The incidences and average concentrations of DON and zearalenone in maize silage were highest in 2004. The incidence of other mycotoxins was low: fumonisin B1 and 15-acetyl-DON were detected in 1.4 and 5% of maize silages, respectively, and roquefortin C in 0.8% of grass silages. None of the silages contained aflatoxins, ochratoxin A, T2-toxin, HT2-toxin, sterigmatocystin, diacetoxyscirpenol, fusarenon-X, ergotamine, penicillinic acid, or mycophenolic acid. This study demonstrates that maize silage is an important source of DON and zearalenone in the diet of dairy cattle. Since the carryover of these mycotoxins into milk is negligible, their occurrence in feed is not considered to be of significant concern with respect to the safety of dairy products for consumers. Potential implications for animal health are discussed.  相似文献   

3.
A collection of 84 cereal-based food products in 25 composites, including beer, was screened for the presence of deoxynivalenol, zearalenone, and their respective metabolites deoxynivalenol-3-glucopyranoside, 3-acetyl-deoxynivalenol, zearalenol-4-glucopyranoside, α-zearalenol, β-zearalenol, α-zearalenol-4-glucopyranoside, β-zearalenol-4-glucopyranoside, and zearalenone-4-sulfate. The most abundant analyte was zearalenone-4-sulfate, which was found in 13 composites, albeit in low concentrations. Furthermore, deoxynivalenol was detected in eight, zearalenone in seven, and deoxynivalenol-3-glucopyranoside in two composites. None of the remaining six analytes was found in any matrices, which suggests that, if at all present, the concentrations of these latter metabolites are very low and, hence, do not impose any danger to consumers. The highest mycotoxin content was found in bran flakes with 254 ng g?1 deoxynivalenol, 6 ng g?1 zearalenone-4-sulfate, and 44 ng g?1 zearalenone.  相似文献   

4.
The EU has set maximum limits for the Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZON). The maximum permitted level decreases from unprocessed wheat, through intermediary products, e.g. flour, to finished products such as bakery goods and breakfast cereals. It is, therefore, important to understand the effects of processing on the mycotoxin distribution in mill fractions. Between 2004 and 2007, samples were taken at commercial flour mills at various points in the milling process and analysed for trichothecenes and ZON. Samples with a range of mycotoxin concentrations harvested in 2004 and 2005 were processed in a pilot mill and the mycotoxins in the different mill fractions quantified. In the commercial samples, DON was the predominant mycotoxin with highest levels detected in the bran fraction. Analysis of the pilot mill fractions identified a significant difference between the two years and between mycotoxins. The proportion of DON and nivalenol in the mill fractions varied between years. DON and nivalenol were higher in flour fractions and lower in bran and offal in samples from 2004 compared to samples from 2005. This may be a consequence of high rainfall pre-harvest in 2004 resulting in movement of these mycotoxins within grains before harvest. There was no significant difference in the distribution of ZON within mill fractions between the two years. For DON, higher concentrations in the grain resulted in a greater proportion of DON within the flour fractions. Understanding the factors that impact on the fractionation of mycotoxins during milling will help cereal processors to manufacture products within legislative limits.  相似文献   

5.
A total of 201 samples of brown rice, polished rice, and two types of by-products, blue-tinged rice and discolored rice, were collected from rice stores maintained at 51 rice processing complexes in Korea. These samples were analyzed for the presence of Fusarium mycotoxins such as deoxynivalenol (DON), nivalenol (NIV), and zearalenone (ZEA). Contaminants (and their ranges) found in discolored rice samples were DON (59 to 1,355 ng g(-1)), NIV (66 to 4,180 ng g(-1)), and ZEA (25 to 3,305 ng g(-1)); those found in blue-tinged (less-ripe) rice were DON (86 to 630 ng g(-1)), NIV (50 to 3,607 ng g(-1)), and ZEA (26 to 3,156 ng g(-1)). Brown rice samples were contaminated mostly with NIV and ZEA (52 to 569 ng g(-1) and 47 to 235 ng g(-1), respectively). Polished rice samples were largely free from mycotoxins, although one sample was contaminated with NIV (77 ng g(-1)). When the fungal flora associated with each rice sample was investigated, blue-tinged rice was the most often contaminated with Fusarium graminearum (3.8%), followed by the discolored rice (2.4%) and brown rice (1.6%) samples. Using PCR, toxin genotyping of 266 isolates of F. graminearum revealed that most isolates (96%) were NIV producers. In conclusion, this survey is the first report of the cocontamination of Korean rice and its by-products with trichothecenes and ZEA. Importantly, it also provides new information on the natural contamination of rice by Fusarium mycotoxins.  相似文献   

6.
The commercial processing of oats is different from that of other cereals, such as wheat and maize. In northwest Europe, oats also appear to be more susceptible to contamination with HT-2 and T-2 toxins than other cereals. Mycotoxins, such as deoxynivanol and zearalenone, in cereals are already controlled by EU legislation. With regard to additional, impending legislation, this study examined HT-2 and T-2 toxins together with zearalenone, deoxynivalenol and other related toxins in a commercial oat mill and how the concentrations varied from raw oats to the final prepared oat flakes. Concentrations of each Fusarium mycotoxin fell by 90-95% during the process, with the major loss being a physical distribution occurring at the de-hulling stage. Initial studies of losses occurring at other stages, such as kilning or de-branning of prepared oat groats, suggest these to be small. The use of colour sorting after kilning showed higher concentrations of each mycotoxin in the discoloured groats. The feasibility of developing a predictive tool for the oat industry is examined.  相似文献   

7.
Organic farming does not allow the use of conventional mineral fertilizers and crop protection products. As a result, in our experiments we chose to grow different species of cereals and to see how cereal species affect mycotoxin accumulation. This study describes the occurrence of deoxynivalenol (DON), zearalenone (ZEA) and T-2/HT-2 toxin in a survey of spelt and common wheat and their bran as well as flour. The analysis was conducted using an enzyme-linked immunosorbent assay (ELISA) method. The concentrations of DON, ZEA and T-2/HT-2 in Triticum spelta and T. aestivum were influenced by species, cereal type and year interaction. The highest concentrations of these mycotoxins were found in spelt grain with glumes, in spelt glumes and in spring wheat. These results show significantly higher concentrations of Fusarium toxins in glumes than in dehulled grain, which indicates the possible protective effect of spelt wheat glumes. The lowest DON, ZEA and T-2/HT-2 concentrations were determined in spelt grain without glumes. The research shows that it is potentially risky to produce bran from grain in which mycotoxin concentrations are below limits by European Union Regulation No. 1881/2006, since the concentration of mycotoxins in bran can be several times higher than that in grain. As a result, although bran is a dietary product characterised by good digestive properties, it can become a harmful product that can cause unpredictable health damage.  相似文献   

8.
Australian isolates of Fusarium species were grown on potato dextrose agar. Trichothecenes produced by these species were extracted by ethyl acetate followed by methanol and a silica gel column was used to clean-up the extract. The extracted samples were derivatized by acetylation with trifluoroacetic anhydride and the derivatives analysed by gas chromatography/mass spectrometry (GC/MS). Multiple ion detection was used to trace ions characteristic of the trichothecenes expected to be present. Quantitation of those found was based on a known mass of pentabromophenol that was added as an internal standard. Eight species of Fusarium (nineteen strains) were surveyed, of which three species, F. acuminatum, F. equiseti and F. sporotrichioides, produced the trichothecenes scirpentriol, diacetoxyscirpenol, neosolaniol, HT-2 toxin, T-2 toxin, T-2 tetraol and deoxynivalenol. Wheat samples were inoculated with four different species of Fusarium, F. acuminatum, F. equiseti, F. graminearum and F. sporotrichioides, and in these samples diacetoxyscirpenol, neosolaniol, HT-2 toxin and T-2 toxin were found.  相似文献   

9.
Predictions of deoxynivalenol (DON) content in wheat at harvest can be useful for decision-making by stakeholders of the wheat feed and food supply chain. The objective of the current research was to develop quantitative predictive models for DON in mature winter wheat in the Netherlands for two specific groups of end-users. One model was developed for use by farmers in underpinning Fusarium spp. disease management, specifically the application of fungicides around wheat flowering (model A). The second model was developed for industry and food safety authorities, and considered the entire wheat cultivation period (model B). Model development was based on observational data collected from 425 fields throughout the Netherlands between 2001 and 2008. For each field, agronomical information, climatic data and DON levels in mature wheat were collected. Using multiple regression analyses, the set of biological relevant variables that provided the highest statistical performance was selected. The two final models include the following variables: region, wheat resistance level, spraying, flowering date, several climatic variables in the different stages of wheat growing, and length of the period between flowering and harvesting (model B only). The percentages of variance accounted for were 64.4% and 65.6% for models A and B, respectively. Model validation showed high correlation between the predicted and observed DON levels. The two models may be applied by various groups of end-users to reduce DON contamination in wheat-derived feed and food products and, ultimately, reduce animal and consumer health risks.  相似文献   

10.
A total of 180 maize samples meant for human consumption from four maize-producing states of southwestern Nigeria were screened for twelve major Fusarium mycotoxins (trichothecenes). Mycological examination of the samples showed that Fusarium verticillioides was the most commonly isolated fungi (71%), followed by F. sporotrichioides (64%), F. graminearum (32%), F. pallidoroseum (15%), F. compactum (12%), F. equiseti (9%), F. acuminatum (8%), F. subglutinans (4%) and F. oxysporum (1%). The trichothecenes include deoxynivalenol (DON), 3, mono-acetyldeoxynivalenol (3-AcDON), 15, mono-acetyldeoxynivalenol (15-AcDON), nivalenol (NIV), HT-2 toxin (HT-2), neosolaniol (NEO), T-2 toxin (T-2), T-2 tetraol and T-2 triol, diacetoxyscirpenol (DAS), MAS-monoacetoxyscirpenol (MAS) and fusarenone-X. Quantification was by high performance liquid chromatography coupled with mass spectroscopy (HPLC/MS); the detection limits for each of the mycotoxins varied between 20 and 200 microg kg(-1). Sixty six samples (36.3%) were contaminated with trichothecenes, DON (mean: 226.2 microg kg(-1); range: 9.6-745.1 microg kg(-1)), 3-AcDON (mean: 17.3 microg kg(-1); range: 0.7-72.4 microg kg(-1)) and DAS (mean: 16.0 microg kg(-1); range: 1.0-51.0 microg kg(-1)) were detected in 22%, 17% and 9% of total samples respectively. There were no 15-AcDON, NIV, HT-2, NEO, T-2, T-2 tetraol, T-2 triol, MAS and fusarenone-X detected. This is the first comprehensive report about the natural occurrence of DON, AcDON and DAS in maize for direct human consumption in Nigeria.  相似文献   

11.
A survey was carried out to obtain data on the occurrence of Fusarium mycotoxin in wheat and flour samples collected from local markets in Egypt and to study the influence of gamma-irradiation on controlling the occurrence of these mycotoxins in wheat, flour and bread. Deoxynivalenol (DON) was detected in five samples of wheat at levels ranging from 103 to 287 μg/kg and one sample each of flour and bread at concentrations 188 and 170 μg/kg. Zearalenone (ZEN) was detected in ten samples of wheat at levels from 28 to 42 μg/kg and four samples each of flour and bread at concentrations of 95 and 34 μg/kg, respectively. T-2 toxin was detected only in one sample each of wheat, flour and bread at concentrations of 2.9, 2.2 and 2.3 μg/kg, respectively. Gamma-irradiation at dose level of 6 kGy completely eliminated fungal flora in flour and wheat. DON, ZEN and T-2 toxin concentrations are reduced to 85, 20 and 2.0 μg/kg for wheat and to 125, 45, and 1.0 μg/kg for flour after 4 kGy exposure and a sharp drop in Fusarium toxin levels occurred at 6 kGy and was eliminated at 8 kGy. Bread prepared from 6 kGy was contaminated with Fusarium toxin at levels below 5 μg/kg. It was noticed that gamma-irradiation reduce greatly the natural occurrence of Fusarium mycotoxins in bread.  相似文献   

12.
Maize and maize products harvested in small fields and stored by farmers in northern Argentina were assayed for Fusarium and fumonisin and beauvericin contamination. Fumonisins were present in six of the 18 samples. The levels of fumonisins ranged from 603 to 1888ng/kg. Fumonisin B3 (FB3) and beauvericin were not detected in the samples evaluated. Fusarium subglutinans was one of the most prevalent species isolated. Twenty-five strains of F. subglutinans isolated from maize kernels and belonging to Gibberella fujikuroi mating population E were beauvericin-producers in culture. Seven of these strains also produced moniliformin. This is the first report on beauvericin-production by maize isolates of F. subglutinans from Argentina.  相似文献   

13.
A limited survey for the occurrence of nivalenol (NIV), deoxynivalenol (DON) and zearalenone (ZEN) in 1984 UK-grown cereals (31 samples) have been carried out using a new procedure, which is a rapid and sensitive method for Fusarium mycotoxins. NIV, DON and ZEN were detected in 17 (55%), 20 (65%) and 4 (13%) out of 31 samples, and average levels in positive samples were 101 micrograms/kg, 31 micrograms/kg and 1 microgram/kg, respectively. Additional surveys on two wheat and eight barley samples harvested in Scotland have shown that 30%, 60% and 100% of the samples were contaminated with NIV, DON and ZEN, respectively. The contents averaged 391 micrograms/kg of NIV, 39 micrograms/kg of DON and 9 micrograms/kg of ZEN. The results of this survey show that UK-grown cereals were significantly contaminated with NIV, DON and ZEN in a similar way to that observed in Japan, Korea and China. This is the first evidence of the natural occurrence of NIV in UK cereals.  相似文献   

14.
Fusaria isolates from wheat were tested for ability to produce trichothecenes and zearalenone. Four isolates of F. culmorum out of 13 produced vomitoxin (DON) and 3 Ac-DON, one produced diacetoxysirpenol and 12 zearalenone. Particularly high yield of zearalenone was observed in cultures of sever pathogenic isolates. Higher temperature (20 °C) during first week of incubation favoured yield of zearalenone. About 50% of zearalenone was produced by surface mycelium.  相似文献   

15.
Further survey on the Fusarium mycotoxins in Korean cereals   总被引:2,自引:0,他引:2  
Fifty-one samples of cereals from the 1984 harvest from Korea were analyzed for nivalenol (NIV), fusarenon-X (FX), deoxynivalenol (DON) and 3-acetyl-DON by gas chromatography (GC) utilizing a 63Ni electron capture detector (ECD), and were quantitated for zearalenone (ZEN) by high-performance liquid chromatography (HPLC) with a fluorescence detector (FD). Trichothecenes and ZEN in the positive samples were confirmed by GC-mass spectrometry (MS). Out of 51 samples, 51, 46 and 42 were positive for NIV, DON and ZEN, respectively, and one malt sample was heavily contaminated with NIV (2675 ng/g) and DON (246 ng/g), and one wheat sample was heavily contaminated with NIV (3169 ng/g). Neither FX nor 3-acetyl-DON was detected in any of the samples. The data reported here indicates that Korean cereals harvested in 1984 are simultaneously contaminated with NIV, DON and ZEN, and the incidences and levels are similar to those observed in the cereals harvested in 1983.  相似文献   

16.
High levels of Fusarium mycotoxins HT-2 and T-2 have been detected in UK oats since surveys started in 2002. Fusarium langsethiae and the closely related species F. sporotrichioides have previously been associated with the contamination of cereals with type A trichothecenes HT-2 and T-2 in Nordic countries. Preliminary microbiological analysis of UK oat samples with high concentrations of HT-2 and T-2 detected and isolated F. langsethiae and F. poae but not the other type A trichothecene producing species F. sporotrichioides, F. sibiricum and F. armeniacum. Two hundred and forty oat flour samples with a known mycotoxin profile were selected from a previous four year study (2002-2005) to cover the full concentration range from below the limit of quantification (<20 μg/kg) to 9,990 μg/kg HT-2+T-2 combined. All samples were analysed for the DNA of F. langsethiae, F. poae and F. sporotrichioides based on previously published PCR assays. F. langsethiae was detectable in nearly all samples; F. poae was detected in 90% of samples whereas F. sporotrichioides was not detected in any sample. A real-time PCR assay was developed to quantify F. langsethiae DNA in plant material. The assay could quantify as low as 10(-4)ngF. langsethiae DNA/μl. Based on this assay and a previously published assay for F. poae, both species were quantified in the oat flour samples with known HT-2+T-2 content. Results showed a good regression (P<0.001, r(2)=0.60) between F. langsethiae DNA and HT-2+T-2 concentration. F. poae DNA concentration was not correlated to HT2+T2 concentration (P=0.448) but was weakly correlated to nivalenol concentration (P<0.001, r(2)=0.09). Multiple regression with F. langsethiae and F. poae DNA as explanatory variates identified that both F. langsethiae and F. poae DNA were highly significant (P<0.001) but F. poae DNA only accounted for an additional 4% of the variance and the estimate was negative, indicating that higher concentrations of F. poae DNA were correlated with slightly lower concentrations of HT2+T2 detected. A stronger regression (P<0.001, r(2)=0.77) between F. langsethiae DNA and HT-2+T-2 was obtained after extraction and quantification of DNA and mycotoxins from individual oat grains. The results from this study provide strong evidence that F. langsethiae is the primary, if not sole, fungus responsible for high HT-2 and T-2 in UK oats.  相似文献   

17.
Fusarium graminearum, Fusarium culmorum, and Fusarium avenaceum, isolated from Fusarium-damaged wheat harvested in western Canada, were cultured and evaluated for mycotoxin production. Extracts of the culture media were assayed for trichothecenes by gas chromatography-mass spectrometry and for moniliformin by liquid chromatography. Deoxynivalenol (DON) was found in 28 of 42 isolates of F. graminearum and 42 of 42 isolates of F. culmorum at levels ranging from 0.5 to 25.0 microg/g. 15-AcetylDON was found in 28 of 42 isolates of F. graminearum at levels ranging from 1.0 to 7.1 microg/g. 3-AcetylDON was found in 41 of 42 isolates of F. culmorum at levels ranging from 0.8 to 13.0 microg/g. Several other trichothecenes were assayed but not detected in the culture medium. Moniliformin was present in 40 of 42 isolates of F. avenaceum at levels ranging from 1.3 to 138.1 microg/g, but was not present in any of the isolates of F. graminearum or F. culmorum.  相似文献   

18.
Fusarium head blight (FHB) is among the major causes of reduced quality in winter wheat and its products. In addition, the causal fungi produce a variety of toxins. A relatively high FHB infection rate in winter wheat was observed in 2007 and 2008 in Luxembourg. A fusariotoxin survey was carried out in 17 different geographical locations. Three groups of Fusarium mycotoxins (trichothecenes A and B and zearalenone) were analysed by a multi-detection HPLC–MS/MS method. Fusarium strains were also investigated by morphological and molecular methods. In addition, questionnaires relating to cultural practices were sent to the farmers managing the 17 fields investigated. FHB prevalence ranged from 0.3 to 65.8% (mean: 8.5%) in 2007 and from 0 to 24.5% (mean: 8.3%) in 2008. Results of morphological and molecular identification showed that the most common species isolated from diseased wheat spikes was F. graminearum (33.1%), followed by F. avenaceum (20.3%) and F. poae (17.8%). The chemical analysis revealed that 75% of the investigated fields were contaminated by deoxynivalenol (DON, range 0–8111 µg/kg). The preceding crop was highly and significantly correlated to the number of grains infected and had a significant impact on disease prevalence (p = 0.025 and 0.017, respectively, Fisher's F-test). A trend was found for maize as the preceding crop (p = 0.084, Tukey's test) to predict the amount of DON in the fields. This is the first report on the occurrence of DON and ZON in naturally infected wheat grains sampled from Luxembourg.  相似文献   

19.
Co-occurrence of Fusarium mycotoxins in mouldy and healthy corn from Korea   总被引:1,自引:0,他引:1  
A total of 71 samples consisting of 36 mouldy and 35 visibly healthy corn were collected from Kangwon province of Korea and analysed for 8-ketotrichothecenes, zearalenone (ZEA), and fumonisins, including fumonisin B1 (FB1), fumonisin B2 (FB2), and fumonisin B3 (FB3). Five 8-ketotrichothecenes, namely deoxynivalenol (DON), 15-acetyldeoxynivalenol (15-ADON), 3-acetyldeoxynivalenol (3-ADON), nivalenol (NIV), and 4-acetylnivalenol (4-ANIV), ZEA, FB1, FB2, and FB3 were detected in corn samples. DON, 15-ADON, 3-ADON, NIV, 4-ANIV, ZEA, FB1, FB2, and FB3 were detected in mouldy corn with mean values of 4.0, 0.9, 0.2, 1.7, 0.4, 0.6, 23.2, 7.5, and 6.3mug/g, respectively. Visibly healthy corn samples were contaminated with lower levels of 8-ketotrichothecenes, ZEA, and fumonisins than mouldy corn samples. However, 5 of 35 healthy corn samples analysed were contaminated with fumonisins at high levels up to 12.5mug/g for FB1, 5.4mug/g for FB2, and 0.5mug/g for FB3. This is the first report on the simultaneous occurrence of trichothecenes, ZEA, and fumonisins in corn from Korea.  相似文献   

20.
Samples artificially infected by Fusarium culmorum were analyzed to assess the effects of Fusarium infection on the protein quality of winter wheat (Triticum aestivum L.). The Fusarium infection did not noticeably influence either the crude protein content or the water absorption ability of the wheat flour. The protease activity found in the wheat flour was inversely correlated to the sedimentation value. In contrast, it was positively correlated to both the free amino acid content and the degree of infection as expressed in Fusarium protein equivalents (FPE) quantified by an enzyme-linked immunosorbent assay. A distinct reduction in the content of both total glutenin and high molecular weight glutenin subunits was detected in the seriously infected samples (FPE>20 µg g–1). The infection with Fusarium impaired the dough quality and led to a deformed loaf shape. The fungal protease was active over both a wide range of temperatures (from 10 to 100 °C) and a wide range of pH values (from 4.5 to 8.5). The maximum protease activity was displayed at 50 °C in the pH range 6.0–8.0. This property indicates that the protease produced by F. culmorum may impair storage proteins throughout all the processing procedures associated with wheat flour, thereby causing weak dough properties and, consequently, unsatisfactory bread quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号