首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一维氧化锌纳米棒制备技术的最新研究进展   总被引:5,自引:0,他引:5  
综述了一维氧化锌纳米棒制备技术的研究进展,着重介绍了氧化锌纳米棒的气相和液相合成方法.介绍了不同方法的反应特征、产物形貌及其性能,并对水热法、模板法、热分解前驱物法、离子液体分解法和化学气相沉积法的生长机理进行了描述,展望了一维氧化锌纳米棒的后续研究.  相似文献   

2.
Zinc oxide (ZnO) is an emerging optoelectronic material in large area electronic applications due to its various functional behaviors. We present the fabrication and the characterization of ZnO nanorods. The ZnO nanorods were synthesized using sol-gel hydrothermal technique on oxidized silicon substrates. Different post-annealing temperatures were explored in the sol-gel hydrothermal synthesis of the ZnO nanorods. The surface morphology of the ZnO nanorods were examined using scanning electron microscope (SEM). In order to investigate the structural properties, the ZnO nanorods were measured using X-ray diffractometer (XRD). The optical properties were measured using ultraviolet-visible (UV-Vis) spectroscopy. The influence of the post-annealing temperature on the realized ZnO nanorods will be revealed and discussed in this paper.  相似文献   

3.
原位生成法制备单分散的纳米氧化锌分散液   总被引:4,自引:0,他引:4  
用ZnCl2作原料,PVP作分散剂,在160℃下采用原位生成法制得单分散、具有良好晶体结构和规则外形的ZnO纳米单晶分散液,用透射电子显微镜、X射线衍射、紫外/可见分光光度计等测试手段对其进行了表征.讨论了工艺条件对纳米ZnO尺寸和形貌的影响,并对其生长机理做了初步探讨.  相似文献   

4.
Synthesis of ZnO nanorods from aqueous solution   总被引:1,自引:0,他引:1  
In the present work, crystalline one-dimensional ZnO nanorods were synthesized by a PVP (polyvinylpyrrolidone)-assisted hydrothermal process with zinc acetate as the precursor. The major advantage of this technique is the use of water as the solvent: cheaper and more environmentally friendly than alcohol. The as-synthesized ZnO nanorods have diameters of 50-200 nm and lengths up to 5 μm. X-ray powder diffractometry (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED), Fourier transmission infrared spectroscopy (FTIR) were used to characterize the structural and the chemical features of the ZnO nanorods.  相似文献   

5.
This paper presents a study on low temperature hydrothermal growth of ZnO nanorods (NRs) on pre-seeded (0001) sapphire substrates. Prior to hydrothermal growth of ZnO NRs, epitaxial ZnO seeds were grown by metal-organic chemical vapour deposition under various process conditions. Findings show that the majority of ZnO NRs inclined at a specific angle of about 38° to the direction perpendicular to the substrate surface and exhibited a preferential in-plane alignment, besides other NRs growing vertically from the sapphire surface. X-ray diffraction φ-scan measurements reveal that the ZnO nanorods displayed two distinct epitaxial relationships with sapphire which were (0001)ZnO//(0001)sapphire and (0001)ZnO//(101?4)sapphire, respectively. Reduced lattice mismatch between ZnO and sapphire is responsible for the inclined ZnO NRs growth. The growth direction of ZnO NRs is remarkably dependent on the growth conditions of ZnO seeds and sapphire substrate pre-treatment. The epitaxial orientations of ZnO seeds grown on the sapphire substrate dominate the subsequent ZnO NRs growth and can be controlled through adjusting growth conditions.  相似文献   

6.
ZnO microstructures with various morphologies have been controllably synthesized by hydrothermal route using different precipitant and zinc source in liquid solution. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the ZnO2, Zn(OH)2 and ZnO structures to understand the role of precipitant and precursors in the growth of various morphologies. The nucleation and growth process can regulate by changing the precipitant. When H2O2 was used as precipitant, ZnO particles with a rather uniform particle size of -500 nm and a rather rough surface was obtained. While, ZnO synthesized in this polyvinyl pyrrolidone (PVP) solution has the same granular morphology with particle size of 300-1000 nm. In contrast, ZnO sunflower and polyhedron aggregates composed of several smaller polyhedron were formed, when ammonium hydroxide and NH4HCO3 was applied, respectively. Meanwhile, precursors play an important role in the determination of the morphology of ZnO. Sunflower and dumbbell like ZnO composed of nanosheets were obtained, when different centrifugal component of Zn(OH)2 suspension was applied as zinc source. In contrast, sunflower and dumbbell like ZnO composed of nanorods and ZnO rods were obtained, when different centrifugal components of ZnO2 suspension were used as zinc sources. The growth mechanism of ZnO nanostructures fabricated by the hydrothermal process using different zinc sources was tentatively investigated.  相似文献   

7.
Cotton textile was coated with ZnO@SiO(2) nanorods in order to obtain superhydrophobic and ultraviolet (UV)-blocking properties. The coating process was conducted in mild conditions, which involved the low-temperature preparation of ZnO seeds, hydrothermal growth of ZnO nanorods, bioinspired layer-by-layer deposition of a SiO(2) shell on the surface of ZnO nanorods, and hydrophobic modification of ZnO@SiO(2) nanorods with octadecyltrimethoxysilane. Despite the highly curved morphology of cotton fibers, the ZnO@SiO(2) nanorods coated the textile densely and uniformly. The treated cotton textile was found to have a large UV protection factor (UPF = 101.51) together with UV-durable superhydrophobicity, as determined by contact-angle measurement under long-term UV irradiation. The good UV-blocking property can be ascribed to the high UV absorbance and scattering properties of ZnO nanorods, and the UV-durable superhydrophobicity is a result of suppression of the photoactivity of ZnO nanorods by a SiO(2) shell.  相似文献   

8.
Well aligned, long and uniform ZnO nanorods have been reproducibly fabricated adopting a two-steps Metal-Organic Chemical Vapour Deposition (MOCVD) and Chemical Bath Deposition (CBD) fabrication approaches. Thin (< 100 nm) ZnO buffer layers have been seeded on silicon substrates by MOCVD and ZnO layers have been subsequently grown, in form of well textured nanorods, using CBD. It has been found that the structure and thickness of the seed layer strongly influence the final morphology and the crystal texturing of ZnO nanorods as well as the CBD growth rate. There is, in addition, a strong correlation between morphologies of CBD grown ZnO nanorods and those of the seed layer underneath. Thus, nanorods deposited over low temperature MOCVD buffer layers are less homogeneous in lateral dimensions and poorly vertically oriented. On the contrary, higher temperature nano-dimensional ZnO seeds favour the CBD growth of almost mono-dimensional homologue nanorods, with an adequate control of the lateral transport of matter. The nanorod aspect ratio values decrease upon increasing the deposition temperatures of the seed layers. Moreover, the nanorods length can be tailored either by adjusting the CBD growth time or by changing concentration of the N,N,N′,N′-tetramethylethylenediamine ligand used in the CBD process. In particular, at high concentrations, the CBD process is faster with a greater global aspect ratio in agreement with a preferential one-dimensional growth of the ZnO nanostructures. Finally, these ZnO nanorod arrays possess good optical quality in accordance to the photoluminescence properties.  相似文献   

9.
The fabrication of a highly ordered novel ZnO/Si nano‐heterojuntion array is introduced. ZnO seed layer is first deposited on the Si (P<111>) surface. The nucleation sites are then defined by patterning the surface through focused ion beam (FIB) system. The ZnO nanorods are grown on the nucleation sites through hydrothermal process. The whole fabrication process is simple, facile and offers direct control of the space, length and aspect ratio of the array. It is found that ZnO/Si nanojunctions show an improved interface when subjected to heat treatment. The recrystallization of ZnO and the tensile lattice strain of Si developed during the heating process contribute the enhancement of their photoresponses to white light. The photoluminescence (PL) measurement result of nano‐heterojunction arrays with different parameters is discussed.  相似文献   

10.
In the present work, we reported a novel method for the synthesis of well-dispersed flower-like ZnO microstructures derived from highly regulated, well-dispersed ZnO nanorods by using low temperature (100 °C) hydrothermal process and without using any additional surfactant, organic solvents or catalytic agent. The phase and structural analysis were carried out by X-ray diffraction (XRD) which confirms the high crystal quality of ZnO with hexagonal (wurtzite-type) crystal structure. The morphological and structural analyses were carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) which indicate the formation of well-dispersed ZnO nanorods as well as flower-like ZnO. It has been shown that flower-like ZnO is made up of dozen of ZnO nanorods building block units. The high resolution transmission electron microscopy (HRTEM) and their corresponding selected area electron diffraction (SAED) pattern show that both ZnO nanorods and flower-like ZnO microstructures are single crystalline in nature and preferentially grow along [0 0 0 1] direction. Their optical property was characterized by photoluminescence spectroscopy; shows ZnO nanorods have only violet emission and no other emission while flower-like ZnO microstructures have a weak violet emission and a strong visible emission. A plausible growth mechanism of ZnO nanorods as well as flower-like ZnO microstructures has been given.  相似文献   

11.
Vertically aligned ZnO nanorods were synthesized on a-plane sapphire via a metal catalyzed vapor phase transport and condensation process in a two-zone vacuum furnace. Planar-tip and tapered-tip ZnO nanorods were successfully synthesized by utilizing different source materials under the same growth conditions. The growth mechanisms were proposed to be vapor-liquid-solid (VLS) process for planar-tip ZnO nanorods and a combination of VLS and self-catalyzed processes for tapered-tip ZnO nanorods, From cathodoluminescence (CL) measurements, tapered-tip ZnO nanorods have more intense green emission than planar-tip ZnO nanorods, and therefore possess higher oxygen vacancy concentration than planar-tip ZnO nanorods. From CL characteristics, well-aligned planar-tip ZnO nanorods shall serve effectively as laser source, while well-aligned tapered-tip ZnO nanorods are suitable for direction-related optical applications.  相似文献   

12.
We report a simple hydrothermal method at low temperature for synthesis of zinc oxide (ZnO) nanorods followed by ultrasonication. The samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), UV–Vis absorption spectrophotometer and photoluminescence (PL) spectroscopy. The XRD results shows the prepared ZnO nanocrystals are in wurtzite structure. TEM results indicate the growth of ZnO nanorods with increasing reaction stirring time and morphology also get affected after ultrasonication. PL studies also reveal the presence of defects considered as the main reason for the green emission in PL with increasing reaction time and blue shift in UV emission corresponds to reduction of tensile strain.  相似文献   

13.
Zinc oxide (ZnO) nanorods were grown on polyethersulfone substrates with a seed layer by hydrothermal synthesis. The effects of the growth temperature and duration on the structural and optical properties of the ZnO nanorods were investigated by X-ray diffraction, field emission scanning electron microscope and photoluminescence measurements. Improvement of the structural properties was confirmed when the ZnO nanorods were grown at a moderate thermal energy. Thermal energies that were too high or too low resulted in structural degradation: low thermal energies did not provide enough energy for the ZnO growth, and high thermal energies contributed to improper growth by creating an uncommon flake-like structure. Photoluminescence measurements showed that the near-band-edge emission to deep-level emission peak ratio increases with increasing growth temperature at growth duration of 5 h.  相似文献   

14.
The green synthesis approach using ecofriendly biological precursors has gained world-wide popularity, reputation and recognition in the synthesis of several inorganic nanomaterials. This work demonstrates that a proper selection of biological precursor from the sustainable natural resources can effectively replace the commercial surfactant for fabrication of nanomaterials. Through this work, the green biotemplate Aloe vera plant extract has emerged as a better substitute of industrial surfactant poly(ethylene)glycol of molecular weight 8000 (PEG8000) in synthesis of ZnO nanorods using a simple sonoemulsion route. The colloidal growth of ZnO nanorods in PEG8000/Aloe vera -assisted sonoemulsion route has been elaborated in the context of relative supremacy of ultrasonic-assisted self-aggregation rate with steric-hindrance effect imposed by PEG8000/Aloe vera . The relative catalytic activity of PEG8000/Aloe vera synthesized ZnO nanorods, Co3O4 nanobelts and CuO nanorods in thermal decomposition of potassium perchlorate has been studied by thermo-gravimetric analysis and differential thermal analysis of pure potassium perchlorate and its mixture with nanoscale ZnO/Co3O4/CuO by 2% weight. The ZnO nanorods formulated through Aloe vera route demonstrated higher catalytic activity than that of ZnO nanorods prepared through PEG8000 route. The relative order of catalytic effect of nanoscale metal oxides in thermal decomposition of potassium perchlorate was found in descending order as CuO nanorods > Co3O4 nanobelts > ZnO nanorods.  相似文献   

15.
We introduce a new type of silicon micro-wire (SiMW) solar cell with a conformal zinc oxide (ZnO) nanorods anti-reflection coating (ARC) and discuss the optical and photovoltaic properties of the SiMW solar cells with controlled ZnO nanorods. The fabrication processes were composed of metal-assisted electroless etching combined with photolithography, spin-on-dopant diffusion, and hydrothermal synthesized ZnO nanorods growth. We found that the combination of Si wire geometry and ZnO ARC was able to maximize the light absorption and to minimize the light reflectance. Illuminated current–voltage (I–V) results show that the photovoltaic efficiency of SiMW solar cells with optimized ZnO ARC was enhanced more than 50% and the short-circuit current density was improved by over 43% compared to SiMW solar cells without ZnO ARC. This is mainly attributed to the reduced light reflectance and enhanced photon absorption. These hybrid structures are promising for making low-cost Si wire solar cells and making them applicable to photovoltaic devices with large areas.  相似文献   

16.
A new simple low-temperature hydrothermal process without addition of any surfactant or complexing agent was put forward to synthesize uniform ZnO nanorods, in which hydrazine hydrate instead of NaOH was used as mineralizer. X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and UV-vis diffuse reflectance spectroscopy were used to characterize the product, the results of which reveal that uniform ZnO nanorods approximately 70 nm in width and 2 μm in length were formed at 150°C within 8 h. Prior to the hydrothermal process hydrazine hydrate reacted with ZnCl2 solution to form a complex, and the complex slowly decomposed in the hydrothermal process. All these characteristics were favorable to this additive-free hydrothermal synthesis of ZnO nanorods. The text was submitted by the authors in English.  相似文献   

17.
In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (SAXS), transmission electron microscopy (TEM) along with other physical techniques. The study includes growth kinetics of gold nanocrystals formed by the reduction of HAuCl4 by tetrakis(hydroxymethyl) phosphonium chloride in aqueous solution, of CdSe nanocrystals formed by the reaction of cadmium stearate and selenium under solvothermal conditions, and of ZnO nanorods formed by the reaction of zinc acetate with sodium hydroxide under solvothermal conditions in the absence and presence of capping agents. The growth of gold nanocrystals does not follow the diffusion-limited Ostwald ripening, and instead follows a Sigmoidal rate curve. The heat change associated with the growth determined by isothermal titration calorimetry is about 10 kcal·mol^-1 per I nm increase in the diameter of the nanocrystals. In the case of CdSe nanocrystals also, the growth mechanism deviates from diffusion-limited growth and follows a combined model containing both diffusion and surface reaction terms. Our study of the growth kinetics of uncapped and poly(vinyl pyrollidone) (PVP)-capped ZnO nanorods has yielded interesting insights. We observe small nanocrystals next to the ZnO nanorods after a lapse of time in addition to periodic focusing and defocusing of the width of the length distribution. These observations lend support to the diffusion-limited growth model for the growth of uncapped ZnO nanorods. Accordingly, the time dependence on the length of uncapped nanorods follows the L3 law as required for diffusion-limited Ostwald ripening. The PVP-capped nanorods, however, show a time dependence, which is best described by a combination of diffusion (L^3) and surface reaction (L^2) terms.  相似文献   

18.
Uniform ZnO nanorods were synthesized in high-yield by using metal zinc powder as zinc source via a one-step facile hydrothermal process under mild conditions, in which cetyltrimethylammonium bromide (CTAB) with ordered chain structures acted as the conversion of Zn powder into ZnO nanorods. The characterization results show that the as-synthesized products were structurally uniform and have diameters of 40–80 nm. Gas sensing properties studies show that ZnO nanorods exhibit more excellent response and stability to ethanol than that of ZnO nanoparticles. After working continuously for 50 days, the sensitivity of ZnO nanorods still retained 7.3, whereas, the ZnO nanoparticles showed only 1.0. The facile preparation method and the improved properties derived from typical rods-like nanostructure are significant for the future applications of gas sensing material.  相似文献   

19.
In this study, possibilities of scaling up the synthesis of zinc oxide (ZnO) nanorods (NRs) by the hydrothermal method have been explored. It was found that batches yielding several grams can easily be made using common and easily available materials. Further, a printable composition was fabricated by mixing the obtained ZnO NRs into a common solvent-based screen printable varnish. Scanning electron microscope, high-resolution transmission electron microscope, X-ray diffraction, UV–vis spectroscopy analysis of the scaled up batch indicated that the ZnO nanostructures were of NRs shape, well crystalline and having less defects. Using the ZnO NRs-based printable composition a device fabrication on a flexible substrate was demonstrated, producing a flexible light-emitting device being highly tolerant to bending.  相似文献   

20.
Due to numerous potential applications of semiconductor transition metal-doped nanomaterials and the great advantages of hydrothermal synthesis in both cost and environmental impact, a significant effort has been employed for growth of copper oxide codoped zinc oxide (CuO codoped ZnO) nanostructures via a hydrothermal route at room conditions. The structural and optical properties of the CuO codoped ZnO nanorods were characterized using various techniques such as UV-visible, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), etc. The sensing performance has been executed by a simple and reliable I-V technique, where aqueous ammonia is considered as a target analyte. CuO codoped ZnO nanorods of thin film with conducting coating agents on silver electrodes (AgE, surface area of 0.0216 cm(2)) displayed good sensitivity, stability, and reproducibility. The calibration plot is linear over the large dynamic range, where the sensitivity is approximately 1.549 ± 0.10 μA cm(-2 )mM(-1) with a detection limit of 8.9 ± 0.2 μM, based on signal/noise ratio in short response time. Hence, on the bottom of the perceptive communication between structures, morphologies, and properties, it is displayed that the morphologies and the optical characteristics can be extended to a large scale in transition-metal-doped ZnO nanomaterials and efficient chemical sensors applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号