首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
一种基于FFT的实时谐波分析算法   总被引:4,自引:0,他引:4  
采用FFT算法进行电力系统谐波分析很难做到同步采样和整周期截断,由此造成的频谱泄漏将影响谐波分析的效果。通过对频谱泄漏机理的详细分析,导出了信号实际频谱和泄漏频谱之间的关系,在此基础上提出了一种利用相位差校正信号频率来恢复实际频谱的改进算法。该算法只需要较短的采样数据长度,就能达到较高的计算精度,具有延时小、响应速度快等特点,避免了常用的加窗插值算法通过延长数据采样长度来提高计算精度的缺点,在实时性方面有较大的优势。  相似文献   

2.
基于插值FFT算法的间谐波分析   总被引:46,自引:8,他引:46  
间谐波是非整数倍基波频率的谐波信号.间谐波除了具有一般谐波信号的特性外,还会影响谐波补偿装置,因此准确检测间谐波的参数对于电力系统具有十分重要的意义.快速傅立叶变换在非同步采样情况下存在着较大的误差,因而无法直接获取准确的间谐波参数.为了减小非同步采样的影响,提高间谐波分析精度,提出了基于加窗插值FFr算法的间谐波参数估计,分析和推导了基于Rife-Vincent(Ⅲ)窗的间谐波频率、幅值和相位的估计公式.在此基础上,对插值公式作适当修改,可以进一步提高分析精度.仿真结果表明:改进后的算法在非同步采样时,对电网间谐波和谐波参数的估计具有很高的精度,有利于电力系统中谐波参数的准确获得.  相似文献   

3.
通过软件来实现FFT算法,并把它应用到电力传输中,这就给电力系统的分析提供了可靠的数据,对电力系统的安全运行和正常工作都有很重要的意义。  相似文献   

4.
基于三谱线插值FFT的电力谐波分析算法   总被引:11,自引:0,他引:11  
快速傅里叶变换在非同步采样和数据非整数周期截断的情况下存在较大的误差,无法得到准确的谐波参数。为此,文章提出一种改进的加窗插值傅里叶变换算法进行电力谐波检测。该算法通过分析加窗信号傅里叶变换的频域表达式,利用谐波频点附近的3根离散频谱的幅值确定谐波谱线的准确位置,进而得到谐波的幅值、频率及相位。推导的三谱线插值修正算法能够进一步提高谐波分析的准确性。基于该算法,通过多项式拟合的方式,得出了一些典型窗函数的谐波分析实用修正公式。通过仿真,验证了相比目前常用的双谱线插值修正算法,该算法在加相同窗函数情况下具有更高的计算准确度,从而验证了该算法的有效与实用。  相似文献   

5.
介绍了加窗插值法和准同步法在电力系统谐波参数估计中的应用.首先分析了非同步采样时FFT算法频谱泄漏的主要原因.然后通过对常用窗函数的特性探讨,给出了基于海宁窗和布莱克曼窗下的幅值和频率估计公式.同时基于准同步法的基本原理,给出了幅值计算公式.仿真结果表明,三种方法都能显著减少频谱泄漏.最后结合精度,误差频率特性和算法易实现性的比较,对几种算法的实际使用给出了建议.  相似文献   

6.
非同步采样下电网谐波分析方法的探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
介绍了加窗插值法和准同步法在电力系统谐波参数估计中的应用。首先分析了非同步采样时FFT算法频谱泄漏的主要原因。然后通过对常用窗函数的特性探讨,给出了基于海宁窗和布莱克曼窗下的幅值和频率估计公式。同时基于准同步法的基本原理,给出了幅值计算公式。仿真结果表明,三种方法都能显著减少频谱泄漏。最后结合精度,误差频率特性和算法易实现性的比较,对几种算法的实际使用给出了建议。  相似文献   

7.
基于FFT的高精度谐波检测算法   总被引:72,自引:20,他引:72  
大量非线性元件的应用给电力系统带来了大量的整数和非整数次谐波,传统的谐波检测方法快速傅立叶变换(FFT)由于存在栅和频谱泄漏现象,只适用于整数次谐波的分析,而不适用于非整数次谐波的检测,因此不能够实现精确的谐波分析,非整数次谐波频谱泄漏现象是因为有限长信号的傅立叶变换与理论傅立叶变换的不同而产生的,为消除频谱泄漏误差,提高检测精度,文中详细分析了FFT算法的频谱泄漏现象,在此基础上提出了改进算法,该算法通过对FFT算法做简单变换,减少了频谱泄漏误差,降低了谐波之间的相互干扰,仿真验证了该算法的高精度检测特性,该文提出的算法具有实现简单,精度高的特点,从而为电力系统中的谐波检测和分析提供了一种有效的算法。  相似文献   

8.
加窗插值FFT的电网谐波分析算法研究   总被引:1,自引:0,他引:1  
快速傅立叶变换(FFT)在测量电力系统谐波时存在的频谱泄漏问题会产生较大误差,从而影响分析结果。加窗插值算法可以有效减小泄漏,改善谐波幅值、相位测量准确度。选择电力系统中较为常用的Hanning窗和Blackman-Harris窗插值法,通过仿真对算法的精度和复杂性进行比较分析,对算法进行了进一步修正,使得谐波分析结果与实际情况更为接近。  相似文献   

9.
本文概述了减少非同步采样误差的措施和最新的一些研究成果,并对各种措施进行了分析和评述,对存在的问题和研究趋势提出了自己的看法。  相似文献   

10.
应用FFT进行电力系统谐波分析的改进算法   总被引:155,自引:22,他引:155  
采用快速傅立叶变换(FFT)进行电力系统谐波分析时很难做到同步采样和整数周期截断,由此造成的频谱泄漏将影响到谐波分析的结果。通过加窗以及采用插值修正算法可以改善计算谐波频率、相位和幅值的准确度。该文针对已有算法存在的问题,提出了一种基于两根谱线的加权平均来修正幅值的双峰谱线修正算法,利用距谐波频点最近的两根离散频谱幅值估计出待求谐波的幅值;同时,利用多项式逼近方法获得了频率和幅值修正的计算公式,这些改进能够进一步降低泄漏和噪声干扰,提高谐波分析的准确性。基于该改进方法,文中推导了一些常用窗函数的实用修正公式。仿真结果验证了该改进算法的有效性和易实现性。  相似文献   

11.
基于卷积窗的电力系统谐波理论分析与算法   总被引:25,自引:5,他引:25  
研究卷积窗在电力系统高精度谐波分析中的应用,并将卷积窗与现有的著名窗函数进行比较.结果表明:与具有相同主瓣宽度的其它窗函数相比,当采样同步误差较小时,卷积窗具有最小的频谱泄漏效应,因此特别适合于电力系统的高精度谐波分析.由于所提出的方法能够通过实时改变采样间隔来进行频率跟踪,从而保证采样同步误差较小.该加窗算法的特点是测量精度极高、算法简单且适用于频率缓变的周期信号.  相似文献   

12.
电机测试中谐波分析的高精度FFT算法   总被引:97,自引:20,他引:97  
快速傅立叶变换在非同步采样情况下存在较大的误差,因而无法在电机测试过程中获得准确的谐波参数。为了减小非同步采样对快速傅立叶变换的影响,提高电机测试中的谐波分析精度,该文通过加窗和插值对原算进行了改进。该评议先是对非同步有栗的泄漏效应进行了简要说明,并借助MATLAB软件求解高次插值方程得到准确的频率偏移量,进而得出较准确的谐波参数。在此基础上,对插值公式作适当改动,可以进一步提高各种情况下特别是泄漏程度较严重时的计算精度。该文最后提供了一个模拟分析实例,分析结果进一步验证了改进后算法在非同步采样时,仍然具有非常高的分析精度。  相似文献   

13.
电力系统谐波分析的高精度FFT算法   总被引:253,自引:28,他引:253  
快速搏立叶变换存在较大的误差,无法直接用于电力系统谐波分析。本文对FFT的泄漏误差进行了分析,根据JAINT randke提出的插值算法提出了多项余弦窗插值的新算法,对FFT的结果进行修正,极大地提高了计算精度,使之适用于电力系统的准确谐波分析。  相似文献   

14.
基于小波分析的电力系统谐波分析   总被引:23,自引:7,他引:23  
谐波对电力系统和用电设备产生了严重危害和影响。小波变换为电力系统谐波分析提供了有力的数学工具,利用基于多分辨分析的小波分析能将电压或电流等信号分解为基波信号和高次谐波信号。本文利用小波变换对某变电所的电压信号进行了分析。  相似文献   

15.
介损角的非同步采样算法及其应用   总被引:16,自引:3,他引:16  
陈楷  胡志坚  王卉  张承学 《电网技术》2004,28(18):58-61
分析了介质损耗角数字化测量的原理、算法及存在的问题.提出了一种非同步采样条件下采用基波相位分离法的补偿算法,即采用等时间间隔对电压、电流信号进行采样,同时对信号周期波动产生的误差进行补偿,并介绍了基于该算法的测量系统的硬件实现方案.仿真和试验结果表明该算法在增加较少运算量的同时提高了介质损耗角的测量精度.  相似文献   

16.
用于电力系统谐波分析的ANN算法   总被引:10,自引:0,他引:10  
金明  刘远龙 《电网技术》1997,21(5):52-54
醉评论 种新的、适用于电力系统谐波分析的ANN算法,该算法采用ADALINE模型和LMS学习机制。文中给出了利用该算法进行谐波分析的仿真结果,并与傅氏算法和最小二乘算法的计划结果进行了比较。算例表明,ANN算法具有精度高、收敛速度快的特点,用该算法得到的结果是令人满意的。  相似文献   

17.
基于卷积窗的电力系统谐波误差估计与数值模拟   总被引:3,自引:1,他引:3  
研究卷积窗在周期信号高精度谐波分析中的应用,详细分析频谱泄漏效应对测量精度造成的影响.通过数值模拟,比较了四阶卷积窗与其它四项组合余弦窗对谐波参量反演误差的影响.理论分析和数值结果均表明:在电力系统的频偏条件下,使用四阶卷积窗可显著提高谐波参量测量精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号