首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Experimental studies involving the carcinogenic aromatic amine 2-(acetylamino)fluorene (AAF) have afforded two acetylated DNA adducts, the major one bound to C8 of guanine and a minor adduct bound to N2 of guanine. The minor adduct may be important in carcinogenesis because it persists, while the major adduct is rapidly repaired. Primer extension studies of the minor adduct have indicated that it blocks DNA synthesis, with some bypass and misincorporation of adenine opposite the lesion [Shibutani, S., and Grollman, A.P. (1993) Chem. Res. Toxicol. 6, 819-824]. No experimental structural information is available for this adduct. Extensive minimized potential energy searches involving thousands of trials and molecular dynamics simulations were used to study the conformation of this adduct in three sequences: I, d(C1-G2-C3-[AAF]G4-C5-G6-C7).d(G8-C9-G10-C11-G12-C13-G14+ ++); II, the sequence of Shibutani and Grollman, d(C1-T2-A3-[AAF]G4-T5-C6-A7).d(T8-G9-A10-C11-T12-A13-G14); and III, which is the same as II but with a mismatched adenine in position 11, opposite the lesion. AAF was located in the minor groove in the low-energy structures of all sequences. In the lowest energy form of the C3-[AAF]G4-C5 sequence I, the fluorenyl rings point in the 3' direction along the modified strand and the acetyl in the 5' direction. These orientations are reversed in the second lowest energy structure of this sequence, and the energy of this structure is 1.4 kcal/mol higher. Watson Crick hydrogen bonding is intact in both structures. In the two lowest energy structures of the A3-[AAF]G4-T5 sequence II, the AAF is also located in the minor groove with Watson-Crick hydrogen bonding intact. However, in the lowest energy form, the fluorenyl rings point in the 5' direction and the acetyl in the 3' direction. The energy of the structure with opposite orientation is 5.1 kcal/mol higher. In sequence III with adenine mismatched to the modified guanine, the lowest energy form also had the fluorenyl rings oriented 5' in the minor groove with intact Watson-Crick base pairing. However, the mispaired adenine adopts a syn orientation with Hoogsteen pairing to the modified guanine. These results suggest that the orientation of the AAF in the minor groove may be DNA sequence dependent. Mobile aspects of favored structures derived from molecular dynamics simulations with explicit solvent and salt support the essentially undistorting nature of this lesion, which is in harmony with its persistence in mammalian systems.  相似文献   

2.
DNase I and three DNA chemical footprinting agents were used to compare the DNA binding properties of the anthracycline antitumor antibiotics daunomycin, aclacinomycin A, and ditrisarubicin B. These anthracyclines contain a tetracyclic chromophore which intercalates into DNA and a monosaccharide, trisaccharide, and two trisaccharide side chains, respectively. These side chains consist of between one and three 2,6-dideoxy, 1,4-diaxially linked sugars. Three chemical probes, fotemustine, dimethyl sulfate, 4-(2'-bromoethyl)phenol, and the enzymic probe DNase I were used in the footprinting experiments. The chemical probes provided a clear picture of the binding pattern at 37 degrees C and more detailed information than that obtained using the standard DNase I footprinting assay. All three anthracyclines showed preferred binding to 5'-GT-3' sequences in both the chemical and enzymatic footprinting. DNase I footprinting showed that the number of base pairs of DNA protected from cleavage increased with the number of saccharide groups present at particular sites and is consistent with DNA binding of the saccharide side chains. Alkylation of runs of guanine by fotemustine was inhibited by all three anthracyclines, while alkylation by dimethyl sulfate was enhanced for most guanines. The probe 4-(2'-bromoethyl)phenol showed that all three anthracyclines completely protected all of the adenines in the minor groove from alkylation, and enhanced major groove guanine alkylation was observed with aclacinomycin A, daunomycin, and, to a much lesser extent, ditrisarubicin B. These results are consistent with intercalation of the aglycone ring and binding of the rigid, hydrophobic saccharide side chains in the minor groove. Footprinting of four methyl glycosides related to the anthracyclines showed no evidence of DNA binding with any of the agents studied.  相似文献   

3.
The enantiomers of the symmetric metallointercalator complex 1-Rh(MGP)2phi5+ [MGP = 4-(guanidylmethyl)-1,10-phenanthroline; phi = phenanthrenequinone diimine] bound to DNA decamer duplexes containing their respective 6 bp recognition sequences have been investigated using 1H NMR. Shape selection due to the chirality of the metal center and hydrogen-bonding contacts of ancillary guanidinium groups to 3'-G N7 atoms define the recognition by complexes which bind by intercalation to duplex DNA. The titration of Lambda-Rh into the self-complementary decamer containing the recognition sequence (5'-GACATATGTC-3', L1) resulted in one symmetric bound conformation observed in the 1H NMR spectrum, indicating that the DNA duplex retains its symmetry in the presence of the metal complex. Upfield chemical shifts of duplex imino protons and the disruption of the NOE base-sugar contacts defined the central T5-A6 intercalation site. The downfield shift of the G8 imino proton supports the conclusion that the pendant guanidinium arms make simultaneous H-bonding contacts to the N7 atoms of 3'-G8 bases on either side of the site. A variable-temperature study of a partially titrated sample (2:3 Lambda-Rh/L1) showed the exchange rate (kobs) at 298 K to be 68 s-1 and the activation barrier to exchange (DeltaG of association) to be 2.7 kcal/mol, a value comparable to the stacking energy of one base step. The results presented coupled with biochemical data are therefore consistent with binding models in which Lambda-1-Rh(MGP)2phi5+ (Lambda-Rh) traps the recognition site 5'-CATATG-3' in an unwound state, permitting intercalation centrally and hydrogen bonding to guanines at the first and sixth base pair positions. The data suggest a different model of binding and recognition by Delta-Rh. The titration of Delta-Rh into a DNA decamer containing the 6 bp recognition site (D1, 5'-CGCATCTGAC-3'; D2, 5'-GTCAGATGCG-3') resulted in two, distinct conformers, in slow exchange on the NMR time scale. The rate of exchange between the two conformers (kobs) at 298 K is 37 s-1, most likely due to partial dissociation between binding modes. The slower rate relative to Lambda-Rh association reflects the relative rigidity of the D1 and/or D2 sequence in comparison to L1. NOE cross-peaks between the intercalating phi ligand and protons of T5-C6, as well as the upfield shifts observed for imino protons at this step, serve to define the central T5-C6 step as the single site of intercalation. The downfield shift of the 3'-G imino protons indicates the complex makes hydrogen bond contacts with these bases. The complex, which is too small to span a 6 bp B-form DNA sequence, nonetheless makes major groove contacts with 3'-G bases to either side of the site. Notably, both 3'-guanine bases are necessary to impart site specificity and slow dissociation kinetics with the 5'-CATCTG-3' site, as evidenced by the extremely exchange-broadened two-dimensional NOESY spectra of Delta-Rh bound to modified duplexes containing N7-deazaguanine at either G8 or G18; the loss of one major groove contact completely abolishes specificity for 5'-CATCTG-3'. DNA chemical shifts upon binding and intermolecular NOE contacts therefore support a model in which Delta-Rh intercalates in one of two canted binding conformations. Within this model, each intercalation mode allows one guanidinium-guanine hydrogen bond at a time, while bringing the other arm close to the phosphate backbone.  相似文献   

4.
The structure of a formamidopyrimidine (FAPY) adduct arising from imidazole ring opening of the initially formed trans-8, 9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 adduct under basic conditions and positioned in the 5'-d(CTATFAPYGATTCA)-3'*5'-d(TGAATCATAG)-3' oligodeoxynucleotide was determined. The FAPY adduct may be a major progenitor of aflatoxin B1-induced mutations in DNA. The freshly prepared sample showed biphasic melting, with transitions at 28 and 56 degreesC. NMR initially showed multiple subspectra. Over a period of several days at 4 degreesC, the sample converted to a single species with a Tm of 56 degreesC, 15 degrees C greater than the unmodified duplex. The deoxyribose was in the beta configuration about the anomeric carbon, evidenced by NOEs between FAPYG5 H3', H2', H2", and H1'. FAPY formation resulted in the loss of the guanine H8 proton, and the introduction of the formyl proton, which showed NOEs to FAPYG5 H1' and A6 N6Ha. A total of 31 NOEs from AFB1 to DNA protons were observed, mostly to the 5'-neighboring base, T4 in the modified strand. Sequential NOEs were interrupted between T4 and FAPYG5 in the modified strand, between C16 and A17 in the complementary strand, and between T4 N3H and FAPYG5 N1H. An NOE between FAPYG5 N1H and C16 N4H showed intact hydrogen bonding at FAPYG5*C16. Upfield chemical shifts were observed for T4 H6 and A17 H8. Molecular dynamics calculations converged with pairwise rmsd differences of <0.9 A. The sixth root residual was 8.7 x 10(-2). The AFB1 moiety intercalated from the major groove between FAPYG5 and T4*A17, and stacked with T4 and FAPYG5 and partially stacked with A17. The base step between T4*A17 and FAPYG5*C16 was increased from 3.4 to 7 A. The duplex unwound by about 15 degrees. The FAPY formyl group was positioned to form a hydrogen bond with A6 N6Ha. Strong stacking involving the AFB1 moiety, and this hydrogen bond explains the thermal stabilization of four base pairs by this adduct, and may be a significant factor in its processing.  相似文献   

5.
To target selectively the major groove of double-stranded B DNA, we have designed and synthesized a bis(arginyl) conjugate of a tricationic porphyrin (BAP). Its binding energies with a series of double-stranded dodecanucleotides, having in common a central d(CpG)2 intercalation site were compared. The theoretical results indicated a significant energy preference favoring major groove over minor groove binding and a preferential binding to a sequence encompassing the palindrome GGCGCC encountered in the Primary Binding Site of the HIV-1 retrovirus. Spectroscopic studies were carried out on the complexes of BAP with poly(dG-dC) and poly(dA-dT) and a series of oligonucleotide duplexes having either a GGCGCC, CCCGGG, or TACGTA sequence. The results of UV-visible and circular dichroism spectroscopies indicated that intercalation of the porphyrin takes place in poly(dG-dC) and all the oligonucleotides. Thermal denaturation studies showed that BAP increased significantly the melting temperature of the oligonucleotides having the GGCGCC sequence, whereas it produced only a negligible stabilization of sequences having CCCGGG or TACGTA in place of GGCGCC. This indicates a preferential binding of BAP to GGCGCC, fully consistent with the theoretical predictions. IR spectroscopy on d(GGCGCC)2 indicated that the guanine absorption bands, C6=O6 and N7-C8-H, were shifted by the binding of BAP, indicative of the interactions of the arginine arms in the major groove. Thus, the de novo designed compound BAP constitutes one of the very rare intercalators which, similar to the antitumor drugs mitoxantrone and ditercalinium, binds DNA in the major groove rather than in the minor groove.  相似文献   

6.
The novel platinum drugs [{trans-PtCl(NH3)2}2H2N(CH2)nNH2]2+ (1,1/t,t) are currently undergoing preclinical development. The bifunctional DNA binding of these agents allows comparison with that of cisplatin [Farrell et al. (1995) Biochemistry, 34, 15480]. The major DNA lesion of cisplatin, the 1,2-d(GpG) intrastrand adduct, produces a rigid, directed bend 30-35 degrees into the major groove of DNA. We have now completed a structural analysis of the corresponding adduct formed with the dinuclear complexes. Gel retardation assays on 15-22 bp oligonucleotides containing a central d(TG*G*T) site show that the (Pt,Pt)-intrastrand adducts result in a flexible nondirectional bend. This bend is essentially independent of chain length (n = 2, 4, 6). Chemical reactivity assays indicated a hypersensitivity of the thymine 5' to the adduct and an enhanced sensitivity of the 3'-thymine to OsO4. 2D 1H NMR studies on a d(TG1G2T) adduct of [{trans-PtCl(NH3)2}2H2N(CH2)6NH2]2+ have delineated the structural features responsible for these observations. In contrast to the cisplatin adduct, which displays a 100% N-type sugar of the 5'-G and an anti base conformation of the platinated bases in both solid state and solution, the dinuclear adduct does not display the typical N-type sugar pucker. The base orientations are anti (5'-T), anti (G1), anti/syn (G2), and anti (3'-T) while the sugar conformations are N, S/N, N, and S, respectively. The 5'-T remains stacked with its guanine neighbor while the 3'-T becomes unstacked, a reverse of the situation observed for cis-DDP.  相似文献   

7.
Conjugation of an anthracycline to a triplex-forming oligonucleotide (TFO) allows delivery of this drug to a specific DNA site, preserving the intercalation geometry of this class of anticancer agents. Conjugate 11, in which the TFO is linked via a hexamethylene bridge to the O-4 on the D ring of the anthraquinone moiety, affords the most stable triple helix, through intercalation of the planar chromophore between DNA bases and binding of both the TFO and the amino sugar to the major and the minor groove respectively.  相似文献   

8.
A molecular dynamics simulation has been carried out with DNA polymerase beta (beta pol) complexed with a DNA primer-template. The templating guanine at the polymerase active site was covalently modified by the carcinogenic metabolite of benzo[a]pyrene, (+)-anti-benzo[a]pyrene diol epoxide, to form the major (+)-trans-anti-benzo[a]pyrene diol epoxide covalent adduct. Thus, the benzo[a]pyrenyl moiety (BP) is situated in the single-stranded template at the junction between double- and single-stranded DNA. The starting structure was based on the X-ray crystal structure of the rat beta pol primer-template and ddCTP complex [Pelletier, H., Sawaya, M. R., Kumar, A., Wilson, S. H., and Kraut, J. (1994) Science 264, 1891-1903]. During the simulation, the BP and its attached templating guanine rearrange to form a structure in which the BP is closer to parallel with the adjacent base pair. In addition, the templating attached guanine is displaced toward the major groove side and access to its Watson-Crick edge is partly obstructed. This structure is stabilized, in part, by new hydrogen bonds between the BP and beta pol Asn279 and Arg283. These residues are within hydrogen bonding distance to the incoming ddCTP and templating guanine, respectively, in the crystal structure of the beta pol ternary complex. Site-directed mutagenesis has confirmed their role in dNTP binding, discrimination, and catalytic efficiency [Beard, W. A., Osheroff, W. P., Prasad, R., Sawaya, M. R., Jaju, M., Wood, T. G., Kraut, J., Kunkel, T. A., and Wilson, S. H. (1996) J. Biol. Chem. 271, 12141-12144]. The predominant biological effect of the BP is DNA polymerase blockage. Consistent with this biological effect, the computed structure suggests the possibility that the BP's main deleterious impact on DNA synthesis might result at least in part from its specific interactions with key polymerase side chains. Moreover, relatively modest movement of BP and its attached guanine, with some concomitant enzyme motion, is necessary to relieve the obstruction and permit the observed rare incorporation of a dATP opposite the guanine lesion.  相似文献   

9.
A combined NMR-computational approach was employed to determine the solution structure of the (-)-trans-anti-[BP]dG adduct positioned opposite a -1 deletion site in the d(C1-C2-A3-T4-C5- [BP]G6-C7-T8-A9-C10-C11).d(G12-G13-T14-A15-G1 6-G17-A18-T19-G20-G21) sequence context. The (-)-trans-anti-[BP]dG moiety is derived from the binding of the (-)-anti-benzo[a]pyrene diol epoxide [(-)-anti-BPDE] to N2 of dG6 and has a 10R absolute configuration at the [BP]dG linkage site. The exchangeable and non-exchangeable protons of the benzo[a]pyrenyl moiety and the nucleic acid were assigned following analysis of two-dimensional NMR data sets in H2O and D2O solution. The solution conformation has been determined by incorporating intramolecular and intermolecular proton-proton distances defined by lower and upper bounds deduced from NOESY spectra as restraints in molecular mechanics computations in torsion angle space followed by restrained molecular dynamics calculations based on a NOE distance and intensity refinement protocol. Our structural studies establish that the aromatic BP ring system intercalates into the helix opposite the deletion site, while the modified deoxyguanosine residue is displaced into the minor groove with its face parallel to the helix axis. The intercalation site is wedge-shaped and the BP aromatic ring system stacks over intact flanking Watson-Crick dG.dC base pairs. The modified deoxyguanosine stacks over the minor groove face of the sugar ring of the 5'-flanking dC5 residue. The BP moiety is positioned with the benzylic ring oriented toward the minor groove and the distal pyrenyl aromatic ring directed toward the major groove. This conformation strikingly contrasts with the corresponding structure in the full duplex with the same 10R (-)-trans-anti-[BP]dG lesion positioned opposite a complementary dC residue [de los Santos et al. (1992) Biochemistry 31, 5245-5252); in this case the aromatic BP ring system is located in the minor groove, and there is no disruption of the [BP]dG.dC Watson-Crick base pairing alignment. The intercalation-base displacement features of the 10R (-)-trans-anti-[BP]dG adduct opposite a deletion site have features in common to those of the 10S (+)-trans-anti-[BP]dG adduct opposite a deletion site previously reported by Cosman et al. [(1994)(Biochemistry 33, 11507-11517], except that there is a nearly 180 degrees rotation of the BP residue about the axis of the helix at the base-displaced intercalation site and the modified deoxyguanosine is positioned in the opposite groove. In the 10S adduct, the benzylic ring is in the major groove and the aromatic ring systems point toward the minor groove. This work extends the theme of opposite orientations of adducts derived from chiral pairs of (+)- and (-)-anti-BPDE enantiomers; both 10S and 10R adducts can be positioned with opposite orientations either in the minor groove or at base displaced intercalation sites, depending on the presence or absence of the partner dC base in the complementary strand.  相似文献   

10.
Combined NMR-molecular mechanics computational studies were undertaken on the C8-deoxyguanosine adduct formed by the carcinogen 1-nitropyrene embedded in the d(C5-[AP]G6-C7).d(G16-C17-G18) sequence context in a 11-mer duplex, with dC opposite the modified deoxyguanosine. The exchangeable and nonexchangeable protons of the aminopyrene moiety and the nucleic acid were assigned following analysis of two-dimensional NMR data sets in H2O and D2O solution. There was a general broadening of several proton resonances for the three nucleotide d(G16-C17-G18) segment positioned opposite the [AP]dG6 lesion site resulting in weaker NOEs involving these protons in the adduct duplex. The solution conformation of the [AP]dG.dC 11-mer duplex has been determined by incorporating intramolecular and intermolecular proton-proton distances defined by upper and lower bounds deduced from NOESY spectra as restraints in molecular mechanics computations in torsion angle space. The aminopyrene ring of [AP]dG6 is intercalated into the DNA helix between intact Watson-Crick dC5.dG18 and dC7.dG16 base pairs. The modified deoxyguanosine ring of [AP]dG6 is displaced into the major groove and stacks with the major groove edge of dC5 in the adduct duplex. Both carbon and proton chemical shift data for the sugar resonances of the modified deoxyguanosine residue are consistent with a syn glycosidic torsion angle for the [AP]dG6 residue. The dC17 base on the partner strand is displaced from the center of the helix toward the major groove as a consequence of the aminopyrene ring intercalation into the helix. This base-displaced intercalative structure of the [AP]dG.dC 11-mer duplex exhibits several unusually shifted proton resonances which can be accounted for by the ring current contributions of the deoxyguanosinyl and pyrenyl rings of the [AP]dG6 adduct. In summary, intercalation of the aminopyrene moiety is accompanied by displacement of both [AP]dG6 and the partner dC17 into the major groove in the [AP]dG.dC 11-mer duplex.  相似文献   

11.
This paper addresses structural issues related to the capacity of aminofluorene [AF] for frameshift mutations of the -2 type on C8 covalent adduct formation at the G3 site in the d(C-G1-G2-C-G3-C-C) NarI hot spot sequence. This problem has been approached from a combined NMR and relaxation matrix analysis computational structural study of the [AF]dG adduct in the d(C-G-G-C-[AF]G-C-C).d(G-G-C-C-G) sequence context at the 12/10-mer adduct level (designated [AF]dG.del(-2) 12/10-mer). The proton spectra of this system are of exceptional quality and are consistent with the formation of an AF-intercalated conformer with the modified guanine in a syn alignment displaced along with the 5'-flanking cytosine residue into the major groove. The solution structure has been determined by initially incorporating intramolecular and intermolecular proton-proton distances defined by lower and upper bound deduced from NOESY spectra as restraints in molecular mechanics computations in torsion angle space and subsequently refined through restrainted molecular dynamics calculations based on a NOE distance and intensity refinement protocol. Strikingly, the [AF]dG.del(-2) 12/10-mer duplex adopts only one of two potential AF-intercalation alignments for the [AF]dG adduct opposite the -2 deletion site in the NarI sequence context with the extrusion of the dC-[AF]dG step favored completely over extrusion of the [AF]dG-dC step at the lesion site. This polarity establishes that the structural perturbation extends 5' rather than 3' to the [AF]dG lesion site in the adduct duplex. This structure of the [AF]dG adduct opposite a -2 deletion site shows distinct differences with conclusions reported on the alignment of the related acetylaminofluorene [AAF]dG adduct opposite a -2 deletion site in the identical NarI sequence context [Milhe, C., Fuchs, R. P. P., and Lefevre, J. F. (1996) Eur. J. Biochem. 235, 120-127]. In that study, qualitative NMR data without computational analysis were employed to conclude that the extrusion at the lesion site occurs at the [AAF]dG-dC step for the AAF-intercalated conformer of the adduct duplex. The structure of the [AF]dG adduct opposite a -2 deletion site determined in our group provides molecular insights into the architecture of extended slipped mutagenic intermediates involving aromatic amine intercalation and base-displaced syn modified guanines in AF and, by analogy, AAF-induced mutagenesis in the NarI hot spot sequence context.  相似文献   

12.
The three-dimensional structure of a ternary complex of the purine repressor, PurR, bound to both its corepressor, hypoxanthine, and the 16-base pair purF operator site has been solved at 2.7 A resolution by x-ray crystallography. The bipartite structure of PurR consists of an amino-terminal DNA-binding domain and a larger carboxyl-terminal corepressor binding and dimerization domain that is similar to that of the bacterial periplasmic binding proteins. The DNA-binding domain contains a helix-turn-helix motif that makes base-specific contacts in the major groove of the DNA. Base contacts are also made by residues of symmetry-related alpha helices, the "hinge" helices, which bind deeply in the minor groove. Critical to hinge helix-minor groove binding is the intercalation of the side chains of Leu54 and its symmetry-related mate, Leu54', into the central CpG-base pair step. These residues thereby act as "leucine levers" to pry open the minor groove and kink the purF operator by 45 degrees.  相似文献   

13.
Two-dimensional NMR spectroscopy has been applied to study the solution binding of 4',6-diamidino-2-phenylindole (DAPI) to synthetic DNA duplex [d(GCGATCGC)]2. The structure of the complex at a molar ratio of 1:1 drug:duplex has been investigated. NMR results indicate that DAPI binds selectively in the minor groove of the DNA region containing only two A:T base pairs. The results disagree with conclusions drawn from footprinting experiments and show that the presence of the G3NH2 group in the minor groove does not prevent the binding. A molecular model is proposed that closely resembles the crystal structure previously published for the interaction of DAPI with the dodecamer [d(CGCGAATTCGCG)]2, containing four A:T base pairs in the binding site. In this model, DAPI lies in the minor groove, nearly isohelical, with its aromatic rings adjacent to H4' protons of T5 and C6 deoxyribose and the NH indole group oriented toward the DNA axis. The binding does not perturb the B-type conformation of the duplex, and the DNA oligomer conserves its 2-fold symmetry, indicating that fast exchange dynamics exist between the two stereochemically equivalent binding sites of the palindromic sequence. The binding constant and the exchange rate between free and bound species were also measured by NMR spectroscopy.  相似文献   

14.
Two series of mono- and dysfunctional aniline mustards linked to a bisbenzimidazole minor groove binder have been prepared using a new method (polyphosphate ester-mediated direct coupling of appropriate mustard acids with a preformed advanced phenylenediamine intermediate). As the linker chain attaching the mustard was lengthened the binding site size of the compounds to calf thymus DNA remained essentially constant at 2.6 nucleotides, but reversible binding strength declined by a factor of 2. Analogues with longer linker chains alkylated DNA much more rapidly than those with shorter chains, consistent with the electronic factors. The short chain analogues also failed to alkylate a 120 bp HindIII to Bg/II fragment of the gpt gene, as measured by gel electrophoresis cleavage assays. The longer chain analogues (both mono- and dysfunctional mustards) showed patterns of DNA alkylation that varied with chain length. In particular, while most compounds showed substantial N7 alkylation at many guanine residues, the analogue with a (CH2)3 linker chain showed strong alkylation at adenine sites in poly-AT regions. For the longer chain analogues, the bifunctional mustards were substantially (10- to 20-fold) more cytotoxic than the corresponding monofunctional analogues.  相似文献   

15.
The lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is activated to reactive metabolites that methylate or pyridyloxobutylate DNA. Previous studies demonstrated that pyridyloxobutylated DNA interferes with the repair of O6-methylguanine (O6-mG) by O6-alkylguanine-DNA alkyltransferase (AGT). The AGT reactivity of pyridyloxobutylated DNA was attributed to (pyridyloxobutyl)guanine adducts. One potential AGT substrate adduct, 2'-deoxy-O6-[4-oxo-4-(3-pyridyl)butyl]guanosine (O6-pobdG), was prepared. This adduct was stable at pH 7.0 for greater than 13 days and to neutral thermal hydrolysis conditions (pH 7.0, 100 degrees C, 30 min). Under mild acid hydrolysis conditions (0.1 N HCl, 80 degrees C), O6-pobdG was depurinated to yield O6-[4-oxo-4-(3-pyridyl)butyl]guanine (O6-pobG). O6-pobdG was hydrolyzed to 4-hydroxy-1-(3-pyridyl)-1-butanone and guanine under strong acid hydrolysis conditions (0.8 N HCl, 80 degrees C). O6-pobG was detected in 0.1 N HCl hydrolysates of DNA alkylated with the model pyridyloxobutylating agent 4-(acetoxymethylnitrosamino)-1-(3-[5-3H]pyridyl)-1-butanone ([5-3H]NNKOAc). When [5-3H]NNKOAc-treated DNA was incubated with either rat liver or recombinant human AGT, O6-pobG was removed, presumably a result of transfer of the pyridyloxobutyl group from the O6-position of guanine to AGT's active site.  相似文献   

16.
17.
We examined c-Ha-Ras harboring an aspartate to asparagine substitution at position 119 (mutation D119N). The Asp-119 is part of the conserved NKXD motif shared by members of the regulatory GTPase family. This asparagine residue has been proposed to participate in direct bonding to the guanine ring and to determine the guanine-nucleotide binding specificity. The D119N mutation was found to alter nucleotide specificity of Ha-Ras from guanine to xanthine, an observation that directly supports the essential role of hydrogen bonding between the side chain of the aspartic acid residue and the guanine ring in nucleotide binding specificity. Besides nucleotide binding specificity, the D119N mutation has little or no effect on the interaction of Ha-Ras with SDC25C, SOS1, GAP, or Raf. Neither does it affect the hydrolysis of nucleotide triphosphate. Like xanthine-nucleotide-specific EF-Tu, xanthine-nucleotide-specific Ras and related proteins will be useful tools for elucidating cellular systems containing multiple regulatory GTPases.  相似文献   

18.
N-Nitrosopyrrolidine (NPYR) is a well-established hepatocarcinogen that is present in the diet and tobacco smoke and may form endogenously in humans. Biomarkers to assess NPYR exposure and metabolic activation in humans are needed. The cyclic N7,C-8 guanine adduct 2-amino-6,7,8,9-tetrahydro-9-hydroxypyrido[2,1-f]purin-4(3H)-one (8), which is formed in tissues of rats treated with NPYR, is one potential candidate for such a biomarker. In this study, we evaluated the formation of this and other NPYR adducts in reactions of alpha-acetoxyNPYR with dGuo, Guo, DNA, and RNA and determined the extent of urinary excretion of adduct 8 in rats treated with NPYR. alpha-AcetoxyNPYR, a stable precursor to the major product of NPYR metabolic activation, was allowed to react with dGuo, Guo, DNA, or RNA at 37 degrees C, pH 7. The most striking observation was that the cyclic N7,C-8 guanine adduct 8 was formed 9 times more extensively in the reaction with Guo than with dGuo. It was also formed 2.5 times more extensively in RNA than in DNA. In rats treated with NPYR, levels of the cyclic N7,C-8 guanine adduct 8 were 2 times as high in RNA than in DNA. Rats treated with [14C]adduct 8 excreted 51% of this adduct unchanged in urine. Rats treated with [3,4-3H]NPYR excreted 0.00004% of the dose as adduct 8. The major differences in product formation in reactions of alpha-acetoxyNPYR with dGuo versus Guo are unusual for alkylating agents; potential mechanisms are discussed. The higher levels of adduct 8 in RNA than in DNA suggest that RNA may be superior as a source of adduct 8 as a biomarker.  相似文献   

19.
TEL2 is required for telomere length regulation and viability in Saccharomyces cerevisiae. To investigate the mechanism by which Tel2p regulates telomere length, the majority (65%) of the TEL2 ORF was fused to the 3'-end of the gene for maltose binding protein, expressed in bacteria and the purified protein used in DNA binding studies. Rap1p, the major yeast telomere binding protein, recognizes a 13 bp duplex site 5'-GGTGTGTGGGTGT-3' in yeast telomeric DNA with high affinity. Gel shift experiments revealed that the MBP-Tel2p fusion binds the double-stranded yeast telomeric Rap1p site in a sequence-specific manner. Analysis of mutated sites showed that MBP-Tel2p could bind 5'-GTGTGTGG-3' within this 13 bp site. Methylation interference analysis revealed that Tel2p contacts the 5'-terminal guanine in the major groove. MBP-Tel2p did not bind duplex telomeric DNA repeats from vertebrates, Tetrahymena or Oxytricha. These results suggest that Tel2p is a DNA binding protein that recognizes yeast telomeric DNA.  相似文献   

20.
A 17-amino acid arginine-rich peptide from the bovine immunodeficiency virus Tat protein has been shown to bind with high affinity and specificity to bovine immunodeficiency virus transactivation response element (TAR) RNA, making contacts in the RNA major groove near a bulge. We show that, as in other peptide-RNA complexes, arginine and threonine side chains make important contributions to binding but, unexpectedly, that one isoleucine and three glycine residues also are critical. The isoleucine side chain may intercalate into a hydrophobic pocket in the RNA. Glycine residues may allow the peptide to bind deeply within the RNA major groove and may help determine the conformation of the peptide. Similar features have been observed in protein-DNA and drug-DNA complexes in the DNA minor groove, including hydrophobic interactions and binding deep within the groove, suggesting that the major groove of RNA and minor groove of DNA may share some common recognition features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号