首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic effect of inorganic species, within the ash, on the CO2 gasification of three South African coals containing similar carbon-structural properties (elemental, structural and petrographical properties) was assessed. The reactivity of the coals with a particle size between 150 and 250 μm was determined in a thermo gravimetric analyser. The reactivity was measured at temperatures between 900 and 1000 °C, pressures between 1 and 10 bar, and fractions of CO2 between 10 and 30%. For the selected coals, the reactivity decreased with ash content, and was found to be dependent on the composition of the ash. Specifically, the reactivity increased with calcium and magnesium content and alkali index.  相似文献   

2.
Reactivities of seventeen 40 × 100 mesh (U.S.) coals charred to 1000 °C have been measured at 910 °C in 0.1 MPa of a N2H2O mixture containing water vapour at a partial pressure of 2.27 kPa. Char reactivity decreases, in general, with increasing rank of the parent coal. The chars show a 250-fold difference in their reactivities. Results suggest that gasification of chars in air, CO2 and steam involves essentially the same mechanism and that relative gasification rates are controlled by the same intermediate oxygen-transfer step. Removal of inorganic matter from raw coals prior to their charring or from chars produced from raw coals decreases the reactivities of lower-rank chars, whereas reactivities of higher-rank chars increase. Addition of H2 to steam has a marked retarding effect on char reactivity in most cases. However, in a few cases H2 acts as an accelerator for gasification. The effect of particle size, reaction temperature and water-vapour pressure on char reactivity is considered.  相似文献   

3.
Kinetic studies of the catalytic steam gasification of Illinois No. 6 coal were carried out using binary and ternary eutectic salt mixtures in a fixed-bed reactor. The effects of major process variables such as temperature, pressure, catalyst loading and steam flow rate were evaluated for the binary 29% Na2CO3-71% K2CO3 and ternary 43.5% Li2CO3-31.5% Na2CO3-25% K2CO3 eutectic catalyst systems. A Langmuir-Hinshelwood rate expression was developed to explain the reaction mechanism for steam gasification using the binary and ternary catalysts. The activation energy of the ternary catalyst (98 kJ/mol) was less than that of the binary catalyst (201 kJ/mol) or single salt such as K2CO3 (170 kJ/mol). The molar heats of adsorption for the ternary and binary catalysts were exothermic and about 180 and 92 kJ/mol, respectively. The molten nature of the ternary eutectic at the gasification temperatures and its lower activation energy favored higher gasification rates compared to the single and binary alkali metal salts.  相似文献   

4.
The gasification of coals obtained from important coalfields in Brazil was investigated in 1.0?bar of CO2 using a thermogravimetric analyzer. Tests were carried out in two sequential steps: pyrolysis under N2 at 1213 K and isothermal gasification under CO2 in the temperature range of 1113–1213 K. The kinetic study was performed in the kinetically controlled regime and three gas-solid models were fitted to the experimental data. According to the results, subbituminous coal-chars presented higher reactivities than bituminous types, with maceral and ash compositions playing a key role in the overall process. The reaction rates increased with increasing temperature, with maximum values found in the conversion range of 10–60%. The random pore model that predicts a maximum point of reactivity over the reaction course suitably described the gasification kinetics. Values of activation energy between 146.63(±0.03) kJ/mol and 215.09(±0.05) kJ/mol were found, which are consistent to literature data of coals gasified worldwide. Despite the relatively high ash content (32–45%), the Brazilian coals appeared to be sufficiently reactive to be gasified, thus indicating the significance of this study to the development of gasification process in Brazil.  相似文献   

5.
《Fuel》1987,66(2):216-222
A study has been made of the catalytic effect of some compounds of the alkali and alkaline-earth metals on the gasification reactions in CO2 and in steam of chars from a semi-anthracite with a high inorganic matter content. The extent of char gasification depends on the gaseous reactant, type of anion, type of metal, concentration of the catalyst and gasification temperature. Na, especially when added as NaOH, proved to be the most active catalyst. Reactivity results were studied by taking into account the change in the physical state of the catalyst during heat treatment and the chemical characteristics of the coal.  相似文献   

6.
Catalytic gasification of char from co-pyrolysis of coal and biomass   总被引:1,自引:0,他引:1  
The catalytic gasification of char from co-pyrolysis of coal and wheat straw was studied. Alkali metal salts, especially potassium salts, are considered as effective catalysts for carbon gasification by steam and CO2, while too expensive for industry application. The herbaceous type of biomass, which has a high content of potassium, may be used as an inexpensive source of catalyst by co-processing with coal. The reactivity of chars from co-pyrolysis of coal and straw was experimentally examined. The chars were prepared in a spout-entrained reactor with different ratios of coal to straw. The gasification characteristics of chars were measured by thermogravimetric analysis (TGA). The co-pyrolysis chars revealed higher gasification reactivity than that of char from coal, especially at high level of carbon conversion. The influence of the alkali in the char and the pyrolysis temperature on the reactivity of co-pyrolysis char was investigated. The experimental results show that the co-pyrolysis char prepared at 750 °C have the highest alkali concentration and reactivity.  相似文献   

7.
Char reactivity is an important factor influencing the efficiency of a gasification process. As a low-rank fuel, Victorian brown coal with high gasification reactivity is especially suitable for use with gasification-based technologies. In this study, a Victorian brown coal was gasified at 800 °C in a fluidised-bed/fixed-bed reactor. Two different gasifying agents were used, which were 4000 ppm O2 balanced with argon and pure CO2. The chars produced at different gasification conversion levels were further analysed with a thermogravimetric analyser (TGA) at 400 °C in air for their reactivities. The structural features of these chars were also characterised with FT-Raman/IR spectroscopy. The contents of alkali and alkaline earth metallic species in these chars were quantified. The reactivities of the chars prepared from the gasification in pure CO2 at 800 °C were of a much higher magnitude than those obtained for the chars prepared from the gasification in 4000 ppm O2 also at 800 °C. Even though both atmospheres (i.e. 4000 ppm O2 and pure CO2) are oxidising conditions, the results indicate that the reaction mechanisms for the gasification of brown coal char at 800 °C in these two gasifying atmospheres are different. FT-Raman/IR results showed that the char structure has been changed drastically during the gasification process.  相似文献   

8.
Raw and demineralized lignite samples were pyrolyzed from 773 to 1673 K to generate chars. The chars were characterized with Raman spectroscopy for the structure evolution. The reactivities of the chars reacting with CO2 and NO were measured with thermogravimetric analysis. The derived reactivity indexes were correlated with the treatment temperature and the Raman structural parameters to demonstrate the applicability of Raman spectroscopy for evaluation of the reactivities of char CO2 gasification and char-NO reaction. It was found that char microstructure evolution with the treatment temperature could be represented by Raman band area ratios. ID1/IG and IG/IALL represented the evolution of the ordered carbon structure while the combination of ID3/(IG + ID2 + ID3) reflected the evolution of the amorphous carbon structure of the lignite chars with increasing the treatment temperature from 773 to 1673 K. Reactivity indexes of the demineralized chars reacting with both CO2 and NO were found to increase with increasing the treatment temperature, implying that the structure ordering did result in the losses of the reactivities. Higher reactivities of the non-demineralized chars indicated the catalytic role of inorganic matter in the reactions with both gases. ID1/IG and IG/IALL had good linear correlations with the reactivities particularly of the demineralized chars if considering the structure evolution behaviors at lower and higher temperatures, respectively. ID3/(IG + ID2 + ID3) was found to have fairly good linear correlations with the reactivity indexes of the lignite chars generated over the whole temperature range.  相似文献   

9.
The gasification reactivities of three kinds of different coal ranks (Huolinhe lignite, Shenmu bituminous coal, and Jincheng anthracite) with CO2 and H2O was carried out on a self-made pressurized fixed-bed reactor at increased pressures (up to 1.0 MPa). The physicochemical characteristics of the chars at various levels of carbon conversion were studied via scanning electron microscopy (SEM), X-ray diffraction (XRD), and BET surface area. Results show that the char gasification reactivity increases with increasing partial pressure. The gasification reaction is controlled by pore diffusion, the rate decreases with increasing total system pressure, and under chemical kinetic control there is no pressure dependence. In general, gasification rates decrease for coals of progressively higher rank. The experimental results could be well described by the shrinking core model for three chars during steam and CO2 gasification. The values of reaction order n with steam were 0.49, 0.46, 0.43, respectively. Meanwhile, the values of reaction order n with CO2 were 0.31, 0.28, 0.26, respectively. With the coal rank increasing, the pressure order m is higher, the activation energies increase slightly with steam, and the activation energy with CO2 increases noticeably. As the carbon conversion increases, the degree of graphitization is enhanced. The surface area of the gasified char increases rapidly with the progress of gasification and peaks at about 40% of char gasification.  相似文献   

10.
D. vamvuka  E. Karouki  S. Sfakiotakis 《Fuel》2011,90(3):1120-1127
A series of carbon dioxide gasification tests of waste biomass chars were performed in a thermogravimetric analysis system, at non-isothermal heating conditions. The effects of the inorganic constituents of the fuels on thermal conversion characteristics were examined. Reaction rates were determined by developing a power law model.The bulk of char gasification process occurred between 800 and 950 °C. Maximum reaction rate and conversion were exhibited by waste paper char, due to its higher surface area.Inherent alkaline and alkaline earth carbonates and sulphates acted as catalysts, by increasing the reactivity of the fuels in carbon dioxide and causing their degradation to start at lower temperatures (60-75 °C).The kinetic model fitted the experimental results accurately. Activation energy values and reaction order ranged from 180 to 370 kJ/mol and 0.4 to 0.6, respectively, among the chars, indicating a chemically controlled process.  相似文献   

11.
Modeling of catalytic gasification kinetics of coal char and carbon   总被引:1,自引:0,他引:1  
Y. Zhang  S. Hara  S. Kajitani  M. Ashizawa 《Fuel》2010,89(1):152-157
Calcium- and potassium-catalyzed gasification reactions of coal char and carbon by CO2 are conducted, and the common theoretical kinetic models for gas-carbon (or char) reaction are reviewed. The obtained experimental reactivities as a function of conversion are compared with those calculated based on the random pore model (RPM), and great deviations are found at low or high conversion levels as predicted by theory. Namely, calcium-catalyzed gasification shows enhanced reactivity at low conversion levels of <0.4, whereas potassium-catalyzed gasification indicated a peculiarity that the reactivity increases with conversion. CO2 chemisorption analysis received satisfactory successes in both interpreting catalytic effects and correlating the gasification reactivity with irreversible CO2 chemical uptakes (CCUir) of char and carbon at 300 °C. In details, calcium and potassium additions led to significant increases in CCUir and correspondent high reactivities of the char and carbon. Furthermore, CCUir of char and carbon decreased with conversion for calcium-catalyzed reaction but increased for potassium-catalyzed one, corresponded to the tendency of their reactivity. The RPM is extended and applied to these catalytic gasification systems. It is found that the extended RPM predicts the experimental reactivity satisfactorily. The most important finding of this paper is that the empirical constants in the extended RPM correlate well with catalyst loadings on coal.  相似文献   

12.
13.
Potassium-catalyzed steam gasification of petroleum coke for H2 production was performed using a laboratory fixed-bed reaction system with an on-line quadruple mass spectrometer. The gasification reactivity, gasification selectivity and gas release for the catalytic gasification were investigated, compared with the non-catalytic gasification. The catalytic gasification could not only effectively promote these reactions (the water-carbon reaction, the water-gas shift reaction and the methane-steam reforming reaction), but also elevate greatly the gasification selectivity towards CO2 (a high gasification selectivity towards CO2 meant a high H2 production). A quantitative calculation method for the gasification selectivity towards CO and CO2 was proposed to further understand the catalytic behaviors of catalysts. In the case of catalytic gasification, the gasification temperature had opposite effects on the gasification reactivity and the gasification selectivity towards CO2, suggesting that there existed an optimum gasification temperature (about 750 °C) for H2 production from the potassium-catalyzed steam gasification of petroleum coke. In addition, petroleum coke could be feasibly utilized as the feedstocks for the catalytic steam gasification to produce gases with high H2 (55.5-60.4%) and virtually no CH4 (below 0.1%).  相似文献   

14.
The current study investigates the combustion and blast furnace injection performance of three Brazilian subbituminous coals (Mina do Recreio) and their beneficiation products using laboratory scale combustion tests. The coals have relative high ash yields (up to 40 wt%) that were reduced stepwise to levels as low as 12 wt%, dry basis. The reduction of ash yields is paralleled by a significant decrease in sulphur and inertinite contents.The combustion tests were performed in a drop tube reactor operating at 1300 °C using two different atmospheres (2.5 and 5% O2). The chars exhibited preferentially rounded shapes with thick walls and abundant secondary porosity for the 2.5% O2 chars, whereas the 5% O2 chars showed very thin walls as a consequence of extensive burnout. The intrinsic reactivities of both set of chars were similar. The differences in conversion between the two working atmospheres were 24-37% and roughly tend to increase with increasing mineral matter content. Conversions as high as 76-81% were reached operating under 5% O2 indicating that the coals are easy to burn. The small differences in burnout among the coals and their beneficiation products cannot be clearly attributed neither to mineral matter or inertinite content. A rough inverse relationship was found between the intrinsic reactivity of the chars and the inertinite content of the parent coal indicating that the char material derived from inertinite was intrinsically less reactive than that derived from vitrinite. These differences were no longer relevant at high temperature.Blast furnace injection performance was studied through thermobalance experiments using CO2 atmosphere and 1050 °C temperature. It is apparent that the beneficiation process has no effect on the reactivity of the coals from Recreio Mine. The only exception is the low ash coal-2-LabB (11.5 wt%), for which a higher reactivity is indicated. The reactivity tests show also that the coals have adequate properties to be used together with imported coal blends in pulverized coal injection in the blast furnace (PCI).  相似文献   

15.
The effects of alkali and alkaline earth metals such as potassium (K) and calcium (Ca) on CO2 gasification reactivity of Japanese cypress (hinoki) char under various temperatures (1123-1223 K) and CO2 concentration (20-80 vol.%) were studied using thermal gravimetric analysis. The presence of K and Ca compounds in char improved the reactivity of hinoki char for CO2 gasification catalytically. It was also confirmed that K and Ca compounds can be supported on char to exhibit an enhanced catalytic effect during CO2 gasification of K-char and Ca-char. The char gasification rate increased with the increase of CO2 concentration at higher temperatures (1173-1223 K), however at lower temperature (1123 K) the gasification rate decreased at 80% CO2. The retardation of char gasification rate at higher CO2 concentration is caused by the inhibition effect of CO: CO is disproportionated on alkali metal catalysts to CO2 and carbon, and affected the CO2 gasification rate. The dependence of char gasification rate on reaction temperature yielded a straight line in an Arrhenius-type plot which indicated that there was no significant change in the gasification mechanism in the temperature range of 1123-1223 K.  相似文献   

16.
Studies of the gasification of char in CO2 at elevated temperatures are necessary for the development of IGCC technology. Experiments at high heating rates and elevated temperatures revealed that the temperature dependence of gasification reactivity was very different for low compared with high temperature ranges. To elucidate these mechanisms, the reaction of mineral matter and the change in morphology during gasification of a char at elevated temperatures were examined by char characterisation. CO2 gasification experiments showed a large difference in gasification rate for chars prepared at higher temperatures compared to those prepared at lower temperatures. Changes in char particle morphology and mineral matter during gasification are also quite different. At higher carbonisation temperatures, mineral reactions during pyrolysis, which occurs in addition to ash fusion, appear to be one of the factors accounting for these differences. Certainly, a change of mechanism is involved. Graphite enrichment may also contribute to the decrease in char reactivity.  相似文献   

17.
Results of a microscopical examination of catalysed carbon gasification are reported. Both in CO2 and steam, alkali catalysts show evidence of mobility. In the steam gasification of coal chars, the catalysts irreversibly combine with indigenous mineral matter. This is less pronounced in C02. The catalysed CO2 gasification was observed by hot stage microscopy, where alkali carbonate catalysts achieve an apparently molten state during incipient gasification. For single crystal graphite, circular pitting, hexagonal pitting and channelling were observed. For coal chars, irregular morphologies tend to obscure direct observation of surface/catalyst interactions, though subsequent scanning electron micrographs reveal the consequences of extensive catalyst mobility.  相似文献   

18.
Timothy hay abundantly available in New Brunswick, Canada, is mostly used for animal feed and bedding. Upgrading biomass using Torrefaction method can offer benefits in its waste management, energy density and energy conversion efficiency. Temperature and residence time play an important role in the torrefaction process. Meanwhile, CO2 gasification is also a promising thermochemical conversion process due to its potential to reduce net GHG emissions and tune syngas composition. This study investigates the impact of torrefaction parameters on isothermal and non-isothermal CO2 gasification of Timothy hay and spruce chars. Timothy hay chars exhibited higher CO2 gasification reactivity than chars from spruce. The physicochemical properties analysis indicated that higher reactivity of Timothy hay char was mainly attributed to the high amount of alkali and alkaline earth metal (AAEM) content, relatively large BET surface area, a high number ofactive sites, and a low crystalline index. Moreover, in both experimental cases, char derived through a high heating rate and high residence time conditions exhibited improved gasification performance, which was attributed to the generation of large amounts of AAEM (Ca and K) and high specific surface area. Co-gasification results during non-isothermal processes under CO2 showed the presence of larger interactions in coal char/Timothy hay char blends than that of coal char/spruce char blends. For both experimental conditions, interactions were enhanced once the char prepared from high heating rate and high residence time was gasified with coal char. Thus, the proposed approach is a sustainable way of conversion of Timothy hay under CO2 environment.  相似文献   

19.
A Victorian brown coal (68.5% C), a Chinese high-volatile Shenmu bituminous coal (82.3% C) and a Chinese low-volatile Dongshan bituminous coal (90% C) were gasified in a fluidised-bed/fixed-bed reactor at 800 °C in atmospheres containing 15% H2O, 2000 ppm O2 or 15% H2O + 2000 ppm O2. While the gasification of these coals in 2000 ppm O2 converted less than 27% of coal-N into NH3, the introduction of steam played a vital role in converting a large proportion of coal-N into NH3 by providing H on char surface. The importance of the roles of steam in the formation of NH3 in atmospheres containing 15% H2O + 2000 ppm O2 decreased with increasing coal rank. This is largely due to the slow gasification of high-rank coal chars, resulting in low availability of H on char surface. The gasification of chars from the high-rank coal appears to produce higher yields of HCN than that of lower rank coals, probably as a result of the decomposition of partially hydrogenated/broken/activated char-N structures during gasification at high temperature. The alkali and alkaline earth metallic species in brown coal tend to favour the release of coal-N as tar-N but have limited effects on char-N conversion during gasification.  相似文献   

20.
Ash transfer from a reactive to a less reactive coal is an interesting possibility for improving and equalizing gasification characteristics of coals. To assess the catalytic action of coal impurities in the steam gasification of carbon, three approaches were used. In the first series, the effects of different coal ashes on the gasification kinetics of graphite were compared. A parallel study was made by adding lignite ash to a coal of low reactivity. Finally, gasification rates of chars prepared from demineralized coals were measured. While it was found that ash from reactive coals can significantly enhance the gasification rates of chars derived from coals of lesser reactivity, it was not possible to distinguish clearly between a catalytic lowering of the activation energy and an increase in the number of gasification sites. The gasification enhancement by lignite ash may open practical possibilities for blending coals of different reactivity, and warrants further study to identify the constituents associated with this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号