首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以高分子溴化聚苯乙烯(BPS)协同三氧化二锑(Sb2O3)作为复合阻燃剂,对聚对苯二甲酸丁二醇酯(PBT)进行改性。研究了复合阻燃剂对PBT的燃烧性能,电性能及力学性能的影响。结果表明,复合阻燃剂BPS/Sb2O3对PBT具有良好的阻燃效果,对其电性能影响很小,少数力学性能有所下降。在PBT中添加BPS/SbO复合阻燃剂的质量分数为20%时,阻燃PBT的垂直燃烧达到FV-0级。  相似文献   

2.
分别采用A1(OH)3、ZB以及Sb2O3等无机阻燃剂对PVC/木粉复合材料改性,研究不同的阻燃剂配方及阻燃剂含量对PVC/木粉复合材料阻燃性能和力学性能的影响。结果表明:随着A1(OH)3,ZB以及Sb2O3添加量的增加,PVC/木粉复合材料的氧指数(LOI)呈逐渐增大的趋势。Sb2O3阻燃效率最高,当添加量为9份时,氧指数达到35.2%;无机阻燃剂的加入普遍降低了PVC/木粉复合材料的冲击韧性,但对拉伸强度起到了一定的增强作用。  相似文献   

3.
将AIM增韧剂与普通PVC树脂、其他助剂共混制得了共混料;将AIM乳液与普通PVC树脂进行接枝共聚制得了高抗冲PVC树脂,再与其他助剂共混制得了接枝料;比较了二者的抗冲改性效果。结果表明:接枝料的抗冲改性效果更好。  相似文献   

4.
以硫酸铁和硫酸铝为原料,以磷酸处理过的活性炭为模板制备铝酸铁阻燃剂。并通过X射线衍射(XRD)和红外吸收光谱(FT-IR)对合成铝酸铁阻燃剂做了表征。用极限氧指数、烟密度测试其对PVC的阻燃消烟性,当铝酸铁阻燃剂的添加量为5%(质量分数)时,阻燃后软PVC的极限氧指数达到32.8%,烟密度等级为55.45%,拉伸强度为18.36 MPa,断裂伸长率为214%,并通过热重分析对阻燃前后PVC的热降解行为做了研究。结果表明:以活性炭为模板制备的铝酸铁阻燃剂对软质PVC具有较好的阻燃消烟性能。  相似文献   

5.
杨志华  李斌 《化学与粘合》2006,28(4):257-260
PVC是一种应用广泛的高分子材料,但因其具有热稳定性差、易燃烧、发烟量大的缺点而限制了发展,因此PVC的阻燃与抑烟成为阻燃科学研究领域的关键问题之一。纳米型阻燃抑烟剂克服了传统型阻燃抑烟剂添加量大、阻燃抑烟效果不明显的缺点,为研究和解决PVC阻燃抑烟提供了一个新途径。本文介绍了PVC纳米阻燃抑烟剂的制备方法、表征手段及其在PVC中的应用以及PVC降解、阻燃与抑烟的表征,最后简要论述PVC阻燃抑烟的发展趋势。  相似文献   

6.
魏跃  周华兰  江笑 《工业催化》2020,28(3):68-72
以含聚氯乙烯(PVC)的混合塑料和焦化蜡油为原料,在N_2流量3 mL·s~(-1)吹扫条件下进行分段热裂解,裂解温度(25~250)℃、(250~360)℃及(360~480)℃。考察油固比、PVC含量对产物组成的影响,检测裂解油的有机氯含量。结果表明,PVC含量为质量分数5%,焦化蜡油与混合塑料的油固质量比为2,FCC催化剂用量为质量分数10%时,燃料油收率达到92. 04%,气体和固体收率仅有6. 89%和1. 07%。添加焦化蜡油增加液相产物中的重组分,减少轻组分。以焦化蜡油为溶剂进行混合塑料的催化裂解的工艺不仅为"白色污染"的处理开辟了一条新途径,而且为获得较低氯含量塑料裂解油提供了工艺参考。  相似文献   

7.
高抗冲PVC树脂的研制   总被引:1,自引:0,他引:1  
将ACR乳液应用于VC悬浮聚合中合成了具有核一壳结构的新型PVC树脂,从而改善了PVC树脂的冲击性能及流动性能,探讨了该树脂的结构,并将其与共混改性PVC树脂进行了比较,结果表明:高抗冲PVC树脂中的ACR能与PVC分子形成纳米级混合,从而提高了树脂的韧性,改进了加工性能。  相似文献   

8.
The objective of this work is the study of several dechlorination methods devoted to reduce the chlorine content of the liquids obtained in pyrolysis of PVC containing plastic wastes. A mixture of polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET) and polyvinyl chloride (PVC) has been pyrolysed in a 3.5 dm3 semi-batch reactor at 500 °C for 30 min. Stepwise pyrolysis carried out at several temperature and time conditions, the addition of CaCO3 for chlorine capture and a combination of both methods have been studied. Additionally, some thermogravimetric analyses have been carried out in order to establish the best conditions for PVC dehydrochlorination in the presence of other plastics. It has been proved that the application of dehydrochlorination methods plays a significant role in the characteristics of pyrolysis liquids. Stepwise pyrolysis is an effective method for reduction of the chlorine content of pyrolysis liquids; additionally, heavier hydrocarbons and lower quantity of aromatics in the liquids than in conventional pyrolysis are obtained. The addition of CaCO3 leads to the retention of a significant amount of chlorine in the solid, but more chlorine than in a conventional run is found in the liquids, which contains a higher amount of aromatics.  相似文献   

9.
A Low Temperature Conversion (LTC) process carried out on a sample of castor seeds, Ricinus communis, generated fractions of pyrolysis oil, pyrolitic char, gas and aqueous extracts in the following relative amounts, respectively: 50%, 28%, 10% and 12% [w/w]. The pyrolysis oil was added at loadings of 2%, 5%, 10%, 20% and 30% [w/w] to commercial diesel. The density, viscosity, sulfur content, glow point, volatility and cetane index of these mixtures were determined. The results indicate that the addition of pyrolysis oil to commercial diesel results in fuel mixtures within the norms of ANP diesel directive no 15, made on 19. 7. 2006, with the exception of the 20% mixture (which has an unfavorable viscosity) and the 30% mixture (which has an unfavorable viscosity and volatility).  相似文献   

10.
The synergistic effects of activated carbon (AC) and molybdenum oxide (MoO3) in improving the flame retardancy of poly(vinyl chloride) (PVC) were investigated. The effects of AC, MoO3 and their mixture with a mass ratio of 1:1 on the flame retardancy and smoke suppression properties of PVC were studied using the limiting oxygen index and cone calorimeter tests. It was found that the flame retardancy of the relatively cheaper AC was slightly weaker than that of MoO3. In addition, the incorporation of AC and MoO3 greatly reduced the total heat release and improved smoke suppressant property of PVC composites. When the total content of AC and MoO3 was 10 phr, PVC/AC/MoO3 had the lowest peak heat release rate and peak smoke production rate values of 173.80 kW m?2 and 0.1472 m2 s?1, which represented reductions of 47.3 and 59.9%, respectively, compared with those of PVC. Furthermore, thermogravimetric analysis and gel content tests were used to analyze the flame retardant mechanism of AC and MoO3, with results showing that AC could promote early crosslinking in PVC. Char residue left after heating at 500 °C was analyzed using scanning electron microscopy and Raman spectroscopy, and the results showed that MoO3 produced the most compact char, with the smallest and most organized carbonaceous microstructures. © 2017 Society of Chemical Industry  相似文献   

11.
High impact polystyrene/Fe-montmorillonite (HIPS/Fe-MMT) nanocomposites were successfully prepared by melting intercalation. The nanostructures of HIPS/Fe-MMT were testified by X-ray diffraction (XRD) and transmission electron microscope (TEM). Corresponding to pure HIPS, the thermal stability of HIPS/Fe-MMT nanocomposites was notably improved. The peaks of heat release rate (PHRR) and the mass loss rate (MLR) were significantly reduced after the formation of the HIPS/Fe-MMT nanocomposites from cone calorimetry. And nanocomposites PHRR was further lower with the increase of Fe-MMT content in the range of 1 to 5 wt%. The degradation mechanism of HIPS and HIPS/Fe-MMT nanocomposites was conducted by pyrolysis gas chromatography mass spectrometry (Py-GC-MS). And the reason of the enhancement of thermal stability maybe is that structural iron is the operative site for radical trapping in the Fe-MMT and the nanostructure enhances the interaction of the chains of the HIPS.  相似文献   

12.
通过老化试验、加工性和动态稳定性试验及生产试验,测试了钙/锌稳定剂AIMSTA-5128在PVC-M管材加工中的稳定作用。结果表明:AIMSTA-5128的稳定性略优于同类进口产品,采用该稳定剂生产的PVC-M管材的卫生性能和各项物理性能符合相关行业标准。  相似文献   

13.
A novel bio‐based plasticizer containing flame retardant groups based on soybean oil (SOPE) was synthesized from epoxidized soybean oil (ESO) and diethyl phosphate through a ring‐opening reaction. PVC blends plasticized with ESO and SOPE were prepared, respectively. Properties including rheological behavior, thermal stability, flame retardant performance, mechanical properties of PVC plasticized with ESO and SOPE were carefully studied. The results showed that the plasticized PVC blends indicated better compatibility, thermal, and mechanical properties. As a novel bio‐based plasticizer containing flame retardant groups, the TGA data indicated that the thermal degradation temperature of PVC blends plasticized with SOPE could reach to 275.5°C. LOI tests and SEM indicated that the LOI value of PVC blends could increase from 24.2 to 33.6%, the flame retardant performance of SOPE was put into effect by promoting polymer carbonization and forming a consolidated and thick flame retardant coating quickly, which is effective to prohibit the heat flux and air incursion. The enhancement in flame retardancy will expand the application range of PVC materials plasticized with SOPE. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42111.  相似文献   

14.
Expandable polystyrene (EPS) foam is largely used as the thermally insulating external wall in buildings and constructions, but it is extremely flammable because of the presence of almost 98% air into its porous structure, its high surface‐area‐to‐mass ratio, and its elemental composition. Lots of serious fire disasters caused by EPS foam have posed great threats to people's properties and lives in recent years. Thus, a halogen‐free, flame‐retardant EPS is urgently needed, and its preparation is still a global challenge. To solve the problem that it is easy for EPS foam to form melt dripping and difficult for it to generate a char layer during the combustion process, a macromolecular nitrogen–phosphorus intumescent flame retardant (MNP) was selected to prepare flame‐retardant EPS foam and good mechanical and flame‐retardant properties were obtained. The scanning electron microscopy characterization revealed that MNP could penetrate into the gap between the beads, and a thin physical coating layer formed on the surface of the bead. The data from the thermogravimetry–Fourier transform infrared test indicated that a nitrogenous noncombustible gas was generated by the pyrolysis of MNP. When the MNP content increased to 30%, the limiting oxygen index and the smoking density rate of the EPS–MNP foam were 28.8 and 23.6, respectively, and a UL94 V‐0 classification was achieved. In addition, the heat‐release rate, total heat‐release, smoke produce rate, and carbon dioxide production of the EPS–MNP foams all decreased obviously; this was attributed to the flame‐retardant effects of MNP in both the condensed and gas phases. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44356.  相似文献   

15.
《国际聚合物材料杂志》2012,61(1-2):171-178
Abstract

The dielectric properties of PVC plasticized with dioctyl sebacate (DOS) was studied. The dielectric loss tangent was found to decrease for the plasticized samples which interpreted according to the increase in the intermolecular interactions upon plasticization. The plasticizer contribute to the dielectric strength not only via its own polarity but also by markedly changing the nature of the relaxation process. The calculated Frohlich-Kirwood “g” factor indicates that there is a strong interaction between the C-Cl group (of the polymer) and the C = O group (of the plasticizer).  相似文献   

16.
A polymeric flame retardant containing phosphorus and nitrogen (PCNFR) was synthesized and characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance and gel permeation chromatography. The thermal decomposition temperatures at 10% weight loss (T10 wt%) of PCNFR were around 358 °C, and the char yield at 600 °C reached about 60 wt% both in nitrogen and air by thermogravimetric analysis. The flame retarded poly(lactic acid) (PLA) composites with PCNFR were prepared. The thermogravimetric analysis results showed that PCNFR could improve the thermal stability of the flame retarded PLA composites with low loading (≤10 wt%) and at high temperature zone (≥390 °C). The condensed products from the decomposition of the flame retarded composites at 380 °C and 450 °C for different intervals were analyzed by Raman spectroscopy, and the results showed that time and temperature influenced the structure of the char residue evidently. When incorporating 30 wt% PCNFR into PLA, the limited oxygen index of the flame retarded composites reached 25.0%, and V‐0 rating was achieved. The char residues were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy in detail. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
郑秀婷  吴大鸣  刘颖  朱复华 《塑料》2004,33(3):62-65
总结了聚氯乙烯(PVC)塑料燃烧时产生烟雾的机理及其阻燃抑烟原理,并且在已开发出的常用无机阻燃抑烟剂的基础上研究了一种新型的无毒环保型无机纳米级阻燃抑烟剂———纳米双羟基复合金属氧化物(LDHs)。分析了其对PVC的阻燃抑烟机理,并且试验证实了它的阻燃抑烟效果。试验结果表明,该阻燃剂只需少量添加就有明显的阻燃抑烟效果,并且克服了以往由于大量添加无机阻燃剂而造成的力学性能下降的缺点,是一种很有发展前景的新型阻燃抑烟剂。  相似文献   

18.
In this work, a bio‐based flame retardant, casein, was incorporated into poly(lactic acid) (PLA) matrix by melt compounding in order to improve the fire resistance and sustain the biodegradable character of PLA simultaneously. The fire performance of PLA composites was evaluated by limiting oxygen index, UL‐94 vertical burning, and cone calorimeter tests, respectively. The results indicated that the introduction of 20% casein increased the limiting oxygen index value of PLA composites from 20.0% to 32.2%, upgraded the UL‐94 rating from no rating to V‐0, and decreased the peak heat release rate from 779 to 639 kW/m2. The decomposition products of PLA composites were analyzed by Fourier transform infrared, and the morphology of the char after combustion was observed by scanning electron microscopy. It was suggested that casein took effects in both gas phase by releasing non‐flammable gases (such as NH3 and H2O) and condensed phase by the formation of protective char layers. However, the presence of casein in PLA induced an unavoidable deterioration in the mechanical performance. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46599.  相似文献   

19.
The preparation of new poly(urethane‐imide)s (PUIs) having acceptable thermal stability and higher flame resistance was aimed. Two new aromatic diisocyanate‐containing methyldiphenylphosphine oxide and triphenylphosphine oxide moieties were synthesized via Curtius rearrangement in situ and polymerized by various prepared diols. Four aliphatic hydroxy terminated aromatic based diols were synthesized by the reaction between ethylene carbonate and various diphenolic substances. Chemical structures of monomers and polymers were characterized by FTIR, 1H NMR, 13C NMR, and 31P NMR spectroscopy. Thermal stabilities and decomposition behaviors of the PUIs were tested by DSC and TGA. Thermal measurements indicate that the polymers have high thermal stability and produce high char. Polymers exhibit quite high fire resistance, evaluated by fire test UL‐94. The films of the polymers were prepared by casting the solution. Inherent viscosities, solubilities, and water absorbtion behaviors of the polymers were reported in. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The N‐[3‐(dimethoxy‐methyl‐silanyl)‐propyl]‐N′‐ (9‐methyl‐3,9‐dioxo‐2,4,8,10‐tetraoxa‐3,9‐diphospha‐spiro[5.5]undec‐3‐yl)‐ethane‐1,2‐diamine/dimethoxy dimethyl silane copolymer (PSiN II), which simultaneously contains silicon, phosphorus, and nitrogen, is synthesized and incorporated into polypropylene (PP). The flame retardancy is evaluated by the limiting oxygen index value, which is enhanced to 29.5 from 17.4 with 20% total loading of PSiN II. The thermal degradation behavior of PP/PSiN II is investigated by thermogravimetric analysis under N2 and air. The PP/PSiN II sample degrades at 400°C for different amounts of time, and the process of degradation is studied by Fourier transform IR. The morphology of the char formed at 400°C for 10 min is investigated by scanning electron microscopy. The swollen inner structure, close, and smooth outer surface provide a much better barrier for the transfer of heat and mass during fire and good flame retardancy. The thermal stability of PP is improved by incorporation of PSiN II. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2487–2492, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号