首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
矿物催化稠油水热裂解及其强化实验研究   总被引:1,自引:0,他引:1  
采用辽河稠油,通过室内实验研究了高温水蒸汽作用下油藏矿物及化学剂环烷酸镍和甲酸对稠油性质的影响。结果表明:实验所用辽河稠油能够发生水热裂解反应,反应后粘度可降低11.69%;油藏矿物对水热裂解反应具有催化作用,能使稠油的降粘率增加一倍左右;环烷酸镍和甲酸的加入使稠油的饱和烃和芳香烃含量进一步增加、胶质和沥青质含量进一步减少,杂原子含量尤其是硫含量明显降低,H/C原子比进一步增加,稠油的品质得到提升,稠油粘度分别从反应前的63670mPa·s降低到19190mPa·s和15010mPa·s,降粘率达到69.86%和76.43%,环烷酸镍和甲酸能强化矿物催化的稠油水热裂解反应。  相似文献   

2.
催化剂对稠油水热裂解反应研究   总被引:4,自引:0,他引:4  
以富含镍的矿石为原料,制备了五种催化剂,确定了最佳催化剂。在此基础上研究了催化剂对稠油水热裂解反应的催化作用。考察了在注蒸汽条件下反应温度和催化剂添加量对稠油的粘度和平均分子质量的影响。实验结果表明,在注入蒸汽的条件下,辽河稠油可以发生水热裂解反应,高温下催化剂对水热裂解反应具有催化作用。探讨了催化剂对稠油水热裂解反应的催化机理。  相似文献   

3.
大庆常压催化裂解动力学研究   总被引:3,自引:0,他引:3  
Catalytic pyrolysis of Daqing atmospheric residue on catalyst CEP-1 was investigated in a confined fluidized bed reactor. The results show that reaction temperature, the mass ratios of catalyst to oil and steam to oil have significant effects on product distribution and yields of light olefins. The yields of light olefins show the maxima with the increase of reaction temperature, the mass ratios of catalyst to oil and steam to oil, respectively. The optimized operating conditions were determined in the laboratory, and under that condition the yields of ethylene, propylene and total light olefins by mass were 15.9%, 20.7% and 44.3% respectively. The analysis of pyrolysis gas and pyrolysis liquid indicates that CEP-1 has good capacity of converting heavy oils into light olefins, and there is a large amount of aromatics in pyrolysis liquid.  相似文献   

4.
针对常规降粘剂存在降粘费用高、加剂量大、环境效应等问题,以辽河稠油为研究对象,根据乳化等效应提出了稠油加醇降粘的研究思路。采用流变测试技术,研究了醇种类、加醇量对辽河稠油流变性的影响。旨在计算加醇用量和评价降粘效果,进而为稠油加醇降粘提供理论依据,为探索经济型、环境友好型化学降粘技术起到铺垫作用。实验用低碳醇掺辽河稠油油样,拟合粘温曲线、流变曲线,结果表明低碳醇中,正戊醇为降粘效果最好的醇,且降粘效果与醇浓度正相关。  相似文献   

5.
Wax composition of sunflower seed oils   总被引:1,自引:3,他引:1  
Waxes are natural components of sunflower oils, consisting mainly of esters of FA with fatty alcohols, that are partially removed in the winterization process during oil refining. The wax composition of sunflower seed as well as the influence of processing on the oil wax concentration was studied using capillary GLC. Sunflower oils obtained by solvent extraction from whole seed, dehulled seed, and seed hulls were analyzed and compared with commercial crude and refined oils. The main components of crude sunflower oil waxes were esters having carbon atom numbers between 36 and 48, with a high concentration in the C40−C42 fraction. Extracted oils showed higher concentrations of waxes than those obtained by pressing, especially in the higher M.W. fraction, but the wax content was not affected significantly by water degumming. The hull contribution to the sunflower oil wax content was higher than 40 wt%, resulting in 75 wt % in the crystallized fraction. The oil wax content could be reduced appreciably by hexane washing or partial dehulling of the seed. Waxes in dewaxed and refined sunflower oils were mainly constituted by esters containing fewer than 42 carbon atoms, indicating that these were mostly soluble and remained in the oil after processing.  相似文献   

6.
Jude A. Onwudili 《Fuel》2010,89(2):501-15
A viscous waste derived from a bio-diesel production plant, in the form of crude glycerol, was reacted under subcritical and supercritical water conditions and the product composition determined in relation to process conditions. Preliminary analysis of the original sample showed that the main constituent organic compounds were methanol (20.8 wt.%), glycerol (42.3 wt.%) and fatty acid methyl esters (33.1 wt.%). Uncatalyzed reforming experiments were carried out in a 75 ml Hastelloy-C batch reactor at temperatures between 300 °C and 450 °C and pressures between 8.5 MPa and 31 MPa. Oil/wax constituted more than 62 wt.% of the reactions products. At 300 °C, the main product was a waxy material containing mainly glycerol and fatty acid methyl esters. As the temperature increased to supercritical water conditions, low viscosity oils were produced and all of the glycerol was reacted. The oils contained mainly saturated and unsaturated fatty acid esters as well as their decomposition products. The gaseous products were carbon dioxide, hydrogen and methane and lower concentrations of carbon monoxide and C2-C4 hydrocarbons. No char formation was observed. However, during alkaline gasification with sodium hydroxide at 380 °C, the reaction products included a gaseous effluent containing up to 90% by volume of hydrogen, in addition to oil and significant amount of whitish solid residue (soap). Sodium hydroxide influenced the production of hydrogen via water-gas shift by the removal of carbon dioxide as sodium carbonate, but also decreased oil product possibly through saponification.  相似文献   

7.
Two model bio‐oil fractions were chosen as two different major classes of components present in bio‐oil. Steam reforming of the two fractions was carried out to investigate the gas product distributions and carbon deposition behavior. Higher H2 yield and carbon conversion to the gaseous phase can be obtained at relatively low temperature (650 °C) for steam reforming of the light fraction. For steam reforming of the heavy fraction, a higher temperature (800 °C) is necessary to obtain higher H2 yield and carbon conversion to the gaseous phase. At 800 °C, the heavy fraction requires a higher steam to carbon ratio (10) than that for the light fraction (7) to achieve efficient steam reforming. Based on the same carbon space velocity, for 10 h stream time, the drop of H2 yield and carbon conversion to the gaseous phase in the steam reforming of the heavy fraction is more rapid than that of the light fraction. Carbon deposition in the steam reforming of the heavy fraction is much more severe than that of the light fraction, as determined by carbon content analysis and SEM detection.  相似文献   

8.
催化氧化法降低高黏度稠油的黏度有利于油田井下高黏度稠油的开采。用催化剂催化过氧化氢分解,分解产生的热量和氧化剂分解原子氧使原油部分氧化产生二氧化碳和热量以及部分二氧化碳溶解在原油中放出的热量,使原油温度升高;剩余的二氧化碳对原油又产生了驱替作用,最终达到降低黏度、增加原油流动性和易于开采的目的。研究结果表明,以质量分数20%碘化钾溶液为催化剂,加入量为原油质量的1.8%,以含9%过氧化氢的双氧水为氧化剂,加入量为原油质量的5%,胜利油田提供的原油样品在反应时温度由50℃升高到68℃,黏度由18 000 mPa·s降至4 200 mPa·s,降黏率76.67%;以三价铁的络合物为催化剂,同样条件下,原油温度可升高12℃,反应延迟15 min。  相似文献   

9.
郝建玉 《当代化工》2012,41(7):712-713,724
蒸汽吞吐开采是辽河油田超稠油主要开采方式.曙光油田杜84块兴隆台超稠油油藏孔隙度一般为25%~30%,空气渗透率一般高于1306×10-3 μm2,具有高孔隙度,高渗透率的特点,极易发生汽窜,导致注入蒸汽热能不能充分利用,直接降低了注汽井生产效果,使油藏动用不均的矛盾加剧.邻井受窜后含水升高液量突升,温度升高,影响其生产效果或关井防喷.汽窜加剧油层套管变形或损坏.研制的耐高温堵剂有效封堵高渗透层,调整地层高低渗透层带间的吸汽差异,改变注入蒸汽的走向,达到缓解汽窜、消除井间干扰、扩大注入蒸汽波及体积、提高周期采油量的目的.  相似文献   

10.
An industrially degummed Indonesian palm oil was bleached and steam refined in a pilot plant to study the effect of processing on oil color and on the levels of carotenoids and tocopherols. Five concentrations of one natural and two activated clays mixed with a fixed amount of synthetic silica were used for bleaching. For color measurement, the Lovibond method was compared to the CIE (Commission Internationale de l’Eclairage) L*,a*,b* method. The results showed that the L*,a*,b* method is repeatable and that the values found are highly correlated with the carotenoid content of bleached oil samples. The various clays and synthetic silica mixes removed 20–50% of the carotenoids in the degummed oil, depending on clay concentration and activity. For the two activated clays, pigment adsorption increased with clay amount. Steam refining totally destroyed carotenoids in the claytreated oils by heat bleaching. Total tocopherols in the crude oil amounted to 1000 mg/kg, with γ-tocotrienol as the main tocopherolic component followed by α-tocopherol, α-tocotrienol, and δ-tocotrienol. Tocopherol concentrations increased after the bleaching treatment with the most acid clay, and the increase was proportional to the amount of clay used. Both bleaching and steam refining changed the ratios between the various to copherolic components, especially increasing the relative concentration of α-tocotrienol in the refined oil. An average 80% tocopherol retention was obtained after the treatment with acid clay + synthetic silica and steam refining of palm oil.  相似文献   

11.
A method was developed to determine the extent of hydrogenation of the Δ15 double bond which occurs during partial catalytic hydrogenation of soybean oil. A linear relationship was found to exist between the linolenate content of commonly occurring C18 unhydrogenated oils (containing no tetraene) and the propanal resulting from their ozonization reduction. The amount of propanal so produced is directly related to the amount of Δ15 double bond in these oils, as well as in hydrogenated soybean oils. Soybean oil was treated with ozone in carbon tetrachloride at —20 C and then reduced with triphenylphosphine. The ozonized-reduced sample was injected into a gas chromatograph, operated at 170C and equipped with a 12 ft × 1/4 in. column of 100/ 120 mesh porous polymer beads. The propanal peak was identified and its area used as a measure of the fatty acids containing Δ15 double bonds in unhydrogenated soybean and other oils of known linolenate content. A nearly stoichiometric amount of propanal results from ozonizing, reducing and chromatographing soybean oil as shown by comparison with a standard mixture of propanal and carbon tetrachloride. The relative standard deviation for the method is ±4.4%. We have also found this method applicable to other oils containing the omega-3 double bond. Presented at the AOCS-AACC Meeting, Washington, D.C., March, 1968. No. Utiliz, Res. Div., ARS, USDA.  相似文献   

12.
稠油水热裂解油溶性催化剂性能研究   总被引:5,自引:0,他引:5  
合成的油溶性钴系和镍系催化剂作为稠油水热裂解反应的催化剂,具有良好的热稳定性,与表面活性剂石油磺酸盐和供氢剂甲苯复配,降粘重复性稳定。实验结果表明,反应温度180 ℃,油溶性催化剂体系投药量质量分数为0.4%时,可使中国石油辽河油田稠油降粘90%以上;现场试验表明,该催化剂体系有效降低稠油粘度,实验初期稠油的降粘率大于74%。  相似文献   

13.
稠油污水回用热采锅炉的中试研究   总被引:1,自引:0,他引:1  
对新疆油田六九区稠油污水回用于热采锅炉进行了现场中试研究,确定了工艺流程和设计参数,并对除油、除悬浮物、除硅、软化、除氧工艺的选择,运行成本及经济效益进行了分析讨论.结果表明,采用以旋流反应净化工艺为主,结合沉降、过滤、离子交换及除氧的技术路线对稠油污水进行处理,处理后水质达到热采锅炉给水水质标准.该技术应用于油田具有明显的经济效益和环境效益.  相似文献   

14.
杨帆 《当代化工》2012,41(5):522-523,526
针对辽河油田曙光稠油蒸汽吞吐区块多数进人高轮次阶段,地层能量低等矛盾,研制一种提高地层能量、稀化降低原油粘度、提高回采速度和回采水率,减少对地层伤害的一种新技术方法.现场实施43井次,成功率为100%,开采效果显著.  相似文献   

15.
M. Vaezi  M. Moghiman 《Fuel》2011,90(2):878-885
Combustion of heavy fuel oils is a major source of production of particulate emissions and ash, as well as considerable volumes of SOx and NOx. Gasification is a technologically advanced and environmentally friendly process of disposing heavy fuel oils by converting them into clean combustible gas products. Thermochemical equilibrium modeling is the basis of an original numerical method implemented in this study to predict the performance of a heavy fuel oil gasifier. The model combines both the chemical and thermodynamic equilibriums of the global gasification reaction in order to predict the final syngas species distribution. Having obtained the composition of the produced syngas, various characteristics of the gasification process can be determined; they include the H2:CO ratio, process temperature, and heating value of the produced syngas, as well as the cold gas efficiency and carbon conversion efficiency of the process. The influence of the equivalence ratio, oxygen enrichment (the amount of oxygen available in the gasification agent), and pressure on the gasification characteristics is analyzed. The results of simulations are compared with reported experimental measurements through which the numerical model is validated. The detailed investigation performed in the course of this study reveals that the heavy oil gasification is a feasible process that can be utilized to generate a syngas for various industrial applications.  相似文献   

16.
Liaohe extraheavy oil is a kind of special crude oil with high paraffin and asphaltene contents and a pour point of up to 60°C. To improve its flowability, comb‐type poly(maleic alkylamide‐co‐α‐octadecene) copolymers (MACs) with various amidation ratios were synthesized and used. Model oils containing paraffin mixtures with the same average carbon number to Liaohe extraheavy oil with and without asphaltene were prepared to explore the effect of the MACs on paraffin crystallization and asphaltene dispersion, respectively. We found that MACs reduced the yield stress, changed the size and shape of the paraffin crystals, and obstructed the paraffin crystallization for both model oils and extraheavy Liaohe oils as observed by rheology, polarizing light microscopy, X‐ray diffraction, and differential scanning calorimetry. The MACs seemed to be an ideal candidate for improving the flowability of Liaohe extraheavy oils. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40082.  相似文献   

17.
辽河油田西部凹陷稠油资源丰富,分布广泛,类型多样,地化特征显著。根据原油的成熟度、生物降解程度及生物降解后油气的注入情况等多元因素,将该区稠油划分为原生稠油、降解型稠油及降解—混合型稠油。西部凹陷稠油成因主要为生物降解作用,水洗作用和氧化作用则促进了原油稠化,而温度、地下水、化学条件及构造条件等是控制原油降解程度的主要因素。  相似文献   

18.
The catalytic steam cracking (CSC) of heavy crude oil with high amount of sulfur (4.3 wt %) and high-boiling fractions (>500°C) is studied using Mo and Ni nanodispersed catalysts under static conditions (in an autoclave) at 425°C. Experiments on thermal cracking, steam cracking, and catalytic cracking without water are performed to compare and identify the features of CSC. The relationship between the composition and properties of liquid and gaseous products and process conditions, the type of catalyst, and water is studied. Using Ni catalyst in CSC raises the H: C ratio (1.69) in liquid products, compared to other types of cracking, but also increases the yield of coke and gaseous products, so the yield of liquid products falls. When Mo catalyst is used in CSC, low-viscosity semi-synthetic oil with a higher H: C ratio (1.70) and the lowest amount of sulfur in liquid products (2.8 wt %) is produced. XRF and HRTEM studies of the catalyst-containing solid residue (coke) show that under CSC conditions, nickel is present in the form of well-crystallized nanoparticles of Ni9S8 15–40 nm in size, while molybdenum exists in two phases: MoO2 and MoS2, the ratio between which depends on the conditions of the transformation of heavy crude oil. The findings indicate that CSC is a promising process for improving heavy crude oil.  相似文献   

19.
Twenty-two laboratories participated in a collaborative test to determine the iodine value (IV) of eight samples of fish oil (four with IV<150, four with IV>150) with either carbon tetrachloride (AOCS Official Method Cd 1–25) or cyclohexane (AOCS Recommended Practice Cd 1b-87) as solvent and either 1 or 2 h of reaction time. Laboratories received coded duplicate samples (hidden duplicates) and carried out duplicate determinations on each oil by each solvent-time combination (open duplicates). Replacing carbon tetrachloride with cyclohexane resulted in a lower IV (P<0.001). The decrease averaged 1.6 IV units for low-IV oils and 3.8 IV units for high-IV oils; this difference in response of 2.2 IV units between low- and high-IV oils was significant (P<0.001). Increasing the reaction time had a relatively small effect (0.34±0.18). There was no interaction of reaction time with solvent or oil type. Cyclohexane caused emulsions, which made it difficult to titrate residual iodine and thus increased the variability of the determination. The repeatability standard deviations (s r ), based on hidden duplicates, for 1-h reaction time with carbon tetrachloride and cyclohexane were 2.17 and 3.35, respectively. The corresponding reproducibility standard deviations were 2.73 and 4.53.  相似文献   

20.
周志强  刘德俊  关丽  梅宏林 《当代化工》2014,(10):2054-2056,2060
辽河油田大部分稠油主力区块已进入蒸汽吞吐后期开发阶段,为了提高稠油油藏采收率,保持产量觃模的稳定,采用向地下注入大量蒸汽提高油层温度的蒸汽气驱方法来开采原油;初步预测最高温度可达到150℃,如何利用高温采出液所携带的能量成为蒸汽驱开采石油问题的关键所在。高温采出液可在井口、计量站和联合站三个地方换热来回收能量,如何确定那种换热方式使热能回收率最大化?通过计算在井口、计量站和联合站三种换热方式的效率方法来进行比较,得出在联合站换热效率最大为85%;同时,在联合站换热投资最小,为辽河油田进行蒸汽驱开发提供技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号