首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spore germination is a defined developmental process that marks a critical point in the life cycle of Dictyostelium discoideum. Upon germination the environmental conditions must be conducive to cell growth to ensure survival of emerged amoebae. However, the signal transduction pathways controlling the various aspects of spore germination in large part remain to be elucidated. We have used degenerate PCR to identify dhkB, a two-component histidine kinase, from D. discoideum. DhkB is predicted to be a transmembrane hybrid sensor kinase. The dhkB-null cells develop with normal timing to give what seem to be mature fruiting bodies by 22 to 24 h. However, over the next several hours, the ellipsoidal and encapsulated spores proceed to swell and germinate in situ within the sorus and thus do not respond to the normal inhibitors of germination present within the sorus. The emerged amoebae dehydrate due to the high osmolarity within the sorus, and by 72 h 4% or less of the amoebae remain as spores, while most cells are now nonviable. Precocious germination is suppressed by ectopic activation of or expression of cAMP-dependent protein kinase A. Additionally, at 24 h the intracellular concentration of cAMP of dhkB- spores is 40% that of dhkB+ spores. The results indicate that DHKB regulates spore germination, and a functional DHKB sensor kinase is required for the maintenance of spore dormancy. DHKB probably acts by maintaining an active PKA that in turn is inhibitory to germination.  相似文献   

2.
Disruption of either the RDEA or REGA genes leads to rapid development in Dictyostelium. The RDEA gene product displays homology to certain H2-type phosphotransferases, while REGA encodes a cAMP phosphodiesterase with an associated response regulator. It has been proposed that RDEA activates REGA in a multistep phosphorelay. To test this proposal, we examined cAMP accumulation in rdeA and regA null mutants and found that these mutants show a pronounced accumulation of cAMP at the vegetative stage that is not observed in wild-type cells. This accumulation was due to a novel adenylyl cyclase and not to the known Dictyostelium adenylyl cyclases, aggregation stage adenylyl cyclase (ACA) or germination stage adenylyl cyclase (ACG), since it occurred in an acaA/rdeA double mutant and, unlike ACG, was inhibited by high osmolarity. The novel adenylyl cyclase was not regulated by G-proteins and was relatively insensitive to stimulation by Mn2+ ions. Addition of the cAMP phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX) permitted detection of the novel adenylyl cyclase activity in lysates of an acaA/acgA double mutant. The fact that disruption of the RDEA gene as well as inhibition of the REGA-phosphodiesterase by IBMX permitted detection of the novel AC activity supports the hypothesis that RDEA activates REGA.  相似文献   

3.
4.
Long-term potentiation (LTP) at the mossy fiber-->CA3 pyramidal cell synapse in the hippocampus is an NMDA-independent form of LTP that requires cAMP-dependent protein kinase (PKA) activity and can be induced by forskolin, a general activator of adenylyl cyclases. Presynaptic Ca2+ influx and elevated cAMP may be obligatory for mossy fiber LTP. Because the Ca2+-stimulated type 1 adenylyl cyclase (AC1) is expressed in the dentate gyrus and CA3 pyramidal cells, it is hypothesized that AC1 may be critical for mossy fiber LTP. To test this hypothesis, we examined several forms of hippocampal LTP in wild-type and AC1 mutant mice. Wild-type and AC1 mutant mice exhibited comparable perforant path LTP recorded in the dentate gyrus as well as decremental LTP at the Schaffer collateral-->CA1 pyramidal cell synapse. Although the mutant mice exhibited normal paired pulse facilitation, mossy fiber LTP was impaired significantly in AC1 mutants. High concentrations of forskolin induced mossy fiber LTP to comparable levels in wild-type and AC1 mutant mice, indicating that signaling components downstream from the adenylyl cyclase, including PKA, ion channels, and secretory machinery, were not affected by disruption of the AC1 gene. These data indicate that coupling of Ca2+ to activation of AC1 is crucial for mossy fiber LTP, most likely via activation of PKA and enhancement of excitatory amino acid secretion.  相似文献   

5.
In a previous paper we presented evidence for a negative regulation of adenylyl cyclase activity by tyrosine protein kinase(s) in the human leukemic T cell line Jurkat. In order to examine this point in non malignant cells, we conducted the present study in human peripheral blood mononuclear cells (PBMC). In these cells, staurosporine, a broad spectrum protein kinase inhibitor, enhanced not only the receptor-mediated, induced by prostaglandin E2 (PGE2), but also the direct (forskolin-induced) stimulation of adenylyl cyclase activity. Herbimycin A, a specific protein tyrosine kinase inhibitor, reproduced only in part the effect of staurosporine, whereas bisindolylmaleimide, the most specific protein kinase C (PKC) inhibitor known at present time, was ineffective. All these observations were made both in the absence and presence of isobutylmethylxanthine, a phosphodiesterase inhibitor, indicating that the effects of staurosporine and herbimycin A on cAMP accumulation were not due to phosphodiesterase inhibition. The calcium ionophore A 23187 also enhanced the PGE2-induced cAMP accumulation, and this effect was not additive to that of staurosporine, but additive to that of herbimycin A. These results confirm and extend those obtained in Jurkat cells. Taken together, they indicate that in human PBMC the adenylyl cyclase activity is negatively regulated by tyrosine kinase(s) and not by PKC, and positively regulated by Ca2+. They also suggest that the major enhancement by staurosporine of the PGE2-induced cAMP accumulation, although chiefly mediated by protein tyrosine kinase inhibition, also depends on another, presently undetermined, effect of the drug simulating that of Ca2+.  相似文献   

6.
The ability of protein kinase C (PKC) to regulate the responsiveness of adenylyl cyclase to different activators was assessed. Membranes prepared from Sf9 cells infected with recombinant baculoviruses encoding either type II or IV adenylyl cyclase were incubated with recombinant PKCalpha (purified from Sf9 cells), and the effects on adenylyl cyclase activity were measured after reconstitution with Gsalpha, Gbetagamma, or forskolin. PKCalpha treatment of type II adenylyl cyclase leads to increases in basal, forskolin-stimulated, and betagamma-stimulated activities and greater sensitivity to stimulation by Gsalpha. Paradoxically, most of the betagamma potentiation of Gsalpha-stimulated activity is eliminated by pretreatment with PKCalpha. By contrast, treatment of type IV adenylyl cyclase with PKCalpha has little effect on the basal, forskolin-stimulated, or betagamma-stimulated activities but markedly reduces the Gsalpha-stimulated and betagamma-potentiated activity of this isoform. These studies demonstrate that protein kinases can alter both the activity of adenylyl cyclase isoforms and their responsiveness to G protein regulation, thereby altering the ability of adenylyl cyclases to integrate signals derived from multiple hormonal inputs.  相似文献   

7.
It has been known for some time that chronic treatment of neuronal cells and tissues with opioids, contrary to their acute effect, leads to an increase in cAMP accumulation. This phenomenon, defined as adenylyl cyclase superactivation, has been implicated in opiate addiction, yet the mechanism by which it is induced remains unclear. Here, we show that this phenomenon can be reproduced and studied in COS-7 cells cotransfected with adenylyl cyclase type V and mu-opioid receptor cDNAs. These cells display acute opioid inhibition of adenylyl cyclase activity, whereas prolonged exposure to the mu-agonist morphine or [-Ala2, N-methyl-Phe4, Gly-ol5]enkephalin leads to a time-dependent superactivation of adenylyl cyclase. This superactivated state is reversible, because it is gradually lost following agonist withdrawal. Adenylyl cyclase superactivation can be prevented by pertussis toxin pretreatment, indicating the involvement of Gi/o proteins, or by cotransfection with the carboxyl terminus of beta-adrenergic receptor kinase or with alpha-transducin (scavengers of Gbetagamma dimers), indicating a role for the G protein betagamma dimers in adenylyl cyclase superactivation. However, contrary to several other Gbetagamma-dependent signal transduction mechanisms (e.g. the extracellular signal-regulated kinase 2/MAP kinase pathway), adenylyl cyclase superactivation is not affected by the Ras dominant negative mutant N17-Ras.  相似文献   

8.
Receptors activate adenylyl cyclases through the Galphas subunit. Previous studies from our laboratory have shown in certain cell types that express adenylyl cyclase 6 (AC6), heterologous desensitization included reduction of the capability of adenylyl cyclases to be stimulated by Galphas. Here we further analyze protein kinase A (PKA) effects on adenylyl cyclases. PKA treatment of recombinant AC6 in insect cell membranes results in a selective loss of stimulation by high (>10 nM) concentrations of Galphas. Similar treatment of AC1 or AC2 did not affect Galphas stimulation. Conversion of Ser-674 in AC6 to an Ala blocks PKA phosphorylation and PKA-mediated loss of Galphas stimulation. A peptide encoding the region 660-682 of AC6 blocks stimulation of AC6 and AC2 by high concentrations of Galphas. Substitution of Ser-674 to Asp in the peptide renders the peptide ineffective, indicating that the region 660-682 of AC6 is involved in regulation of signal transfer from Galphas. This region contains a conserved motif present in most adenylyl cyclases; however, the PKA phosphorylation site is unique to members of the AC6 family. These observations suggest a mechanism of how isoform selective regulatory diversity can be obtained within conserved regions involved in signal communication.  相似文献   

9.
A homolog of the Serum Response Factor (SRF) has been isolated from Dictyostelium discoideum and its function studied by analyzing the consequences of its gene disruption. The MADS-box region of Dictyostelium SRF (DdSRF) is highly conserved with those of the human, Drosophila and yeast homologs. srfA is a developmentally regulated gene expressed in prespore and spore cells. This gene plays an essential role in sporulation as its disruption leads to abnormal spore morphology and loss of viability. The mutant spores were round and cellulose deposition seemed to be partially affected. Initial prestalk and prespore cell differentiation did not seem to be compromised in the mutant since the expression of several cell-type-specific markers were found to be unaffected. However, the mRNA level of the spore marker spiA was greatly reduced. Activation of the cAMP-dependent protein kinase (PKA) by 8-Br-cAMP was not able to fully bypass the morphological defects of srfA- mutant spores, although this treatment induced spiA mRNA expression. Our results suggest that DdSRF is required for full maturation of spores and participates in the regulation of the expression of the spore-coat marker spiA and probably other maturation genes necessary for proper spore cell differentiation.  相似文献   

10.
Ligands which display inverse agonism at G protein-coupled receptors do so by decreasing the intrinsic ability of a receptor to active the cellular G protein population in the absence of an agonist ligand. Expression of the murine delta opioid receptor in Rat-1 fibroblasts resulted in the inverse agonist ICI174864 being able to cause inhibition of basal high affinity GTPase activity and of the binding of [35S]GTP gamma S in membranes of a clone (D2) of these cells which expresses high levels of the receptor. These effects were blocked by co-addition of the neutral antagonist TIPP[psi], demonstrating a requirement for the delta opioid receptor, and by pertussis toxin pretreatment of the cells, showing them to be produced via a Gi-like G protein. The inverse agonist properties of ICI174864 could also be demonstrated in whole cells. Stimulation of forskolin-amplified adenylyl cyclase activity was produced by ICI174864 following [3H]adenine prelabelling of the cells. Constitutively activated mutants of receptors should provide a convenient means to detect inverse agonists. Incubation of cells either transiently or stably transfected with a constitutively activated mutant of the human beta 2-adrenoceptor with the beta 2-inverse agonists betaxolol or sotalol, which are both able to inhibit CAM beta 2-adrenoceptor-mediated basal adenylyl cyclase activity, resulted in a strong upregulation of levels of the receptor. In the stable cells lines this effect was prevented by co-incubation with neutral antagonists but could not be reproduced by an adenylyl cyclase P-site ligand which also inhibited basal adenylyl cyclase levels.  相似文献   

11.
12.
Mossy fiber synapses on hippocampal CA3 pyramidal cells, in addition to expressing an NMDA receptor-independent form of long-term potentiation (LTP), have recently been shown to express a novel presynaptic form of long-term depression (LTD). We have studied the mechanisms underlying mossy fiber LTD and present evidence that it is triggered, at least in part, by a metabotropic glutamate receptor-mediated decrease in adenylyl cyclase activity, which leads to a decrease in the activity of the cAMP-dependent protein kinase (PKA) and a reversal of the presynaptic processes responsible for mossy fiber LTP. The bidirectional control of synaptic strength at mossy fiber synapses by activity therefore appears to be due to modulation of the cAMP-PKA signaling pathway in mossy fiber boutons.  相似文献   

13.
In certain tissues and cells, increases in concentrations of the second messenger cAMP are seen in response to mechanical or deformational stimuli. Type I and type VIII adenylyl cyclases, representing members of a family of calcium-calmodulin-stimulated adenylyl cyclases, and type VII adenylyl cyclase were each stably expressed in human embryonal kidney (HEK) 293 cells. HEK 293 cells exogenously expressing either type I adenylyl cyclase or any one of three type VIII adenylyl cyclase splice variants respond to swelling with increases in cAMP, requiring the presence of calcium in the extracellular medium for such responsiveness. Type VII expressing HEK 293 cells failed to respond to swelling with increased cAMP but demonstrated potentiation of isoproterenol-stimulated activity. This is characteristic of the influence of protein kinase C on the activity of the type VII protein. The relative swelling responsiveness of HEK 293 cells expressing splice variants of the type VIII adenylyl cyclase is consistent with the relative EC50 values for calcium-calmodulin stimulation of these splice variants. This is consistent with the involvement of calmodulin and the requirement for increases in intracellular calcium in mediating swelling-induced acceleration of type VIII adenylyl cyclase activity.  相似文献   

14.
In the present studies, we have investigated the modulation of atrial natriuretic peptide (ANP) receptor of R2 subtype (ANP-R2/ANP-C) coupled to adenylyl cyclase/cAMP signal transduction system by angiotensin II (angII). C-ANF4-23 [des(Gln18, Ser19, Gln20, Leu21, Gly22)ANF4-23-NH2] and AngII inhibited adenylyl cyclase activity in a concentration-dependent manner in vascular smooth muscle cells (VSmc A-10). The maximal inhibitions observed were about 40 and 30%, respectively, with an apparent Ki of about 1 and 10 nm. Pretreatment of the cells with AngII resulted in the attenuation of both C-ANF4-23 and AngII-mediated inhibitions of adenylyl cyclase, without altering [125I]-ANF binding. The levels of Gialpha-2 and Gialpha-3 proteins as determined by immunoblotting were also augmented by AngII treatment. In addition, AngII treatment stimulated the phosphorylation of Gialpha2 but not of Gialpha3 or ANP-C receptor, as revealed by immunoprecipitation of the proteins using specific antibodies after prelabelling the cells with [32P]orthophosphate. Staurosporine and chelerythrine, protein kinase C (PKC) inhibitors at 1 and 100 nm, respectively, prevented the AngII-mediated desensitization of C-ANF 4-23-sensitive adenylyl cyclase. In addition, the AngII-mediated phosphorylation of Gialpha2 protein was also inhibited partially by about 35% by staurosporine treatment. These results suggest that the attenuation of C-ANF4-23-mediated inhibition of adenylyl cyclase activity by AngII may not be attributed to the downregulation of receptors or to the decreased levels of G-proteins, and may involve PKC-dependent mechanisms.  相似文献   

15.
A high density of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors coupled to both adenylyl cyclase and phospholipase C is found in the external granule cell layer of the rat cerebellum during postnatal development. It has recently been reported that synthetic PACAP promotes cell survival and neurite outgrowth in immature granule cells. In the present study, we have investigated the transduction pathways that mediate the neurotrophic activity of PACAP in cultured granule cells from eight-day-old rat cerebellum. The effect of PACAP on cell survival was mimicked by dibutyryladenosine 3',5'-cyclic-monophosphate but not phorbol 12-myristate 13-acetate suggesting that only the adenylyl cyclase pathway is involved in the neurotrophic activity of PACAP. PACAP also induced a transient increase in c-fos messenger RNA level. The ability of PACAP to stimulate c-fos gene expression was mimicked by dibutyryladenosine 3',5'-cyclic-monophosphate but not phorbol 12-myristate 13-acetate. Similar effects of PACAP on granule cell survival were observed whether the cells were continuously incubated with PACAP for 48 h or only exposed to PACAP during 1 h. The protein kinase A inhibitor H89 significantly reduced the effect of PACAP on c-fos messenger RNA level whereas the specific protein kinase C inhibitor chelerythrine did not modify c-fos gene expression. These data indicate that the action of PACAP on cerebellar granule cell survival and c-fos gene expression are both mediated through the adenylyl cyclase/protein kinase A pathway. The observation that a short-term stimulation by PACAP can be converted into a long-lasting response indicates that the effect of the peptide on cell survival must involve immediate-early gene activation. The fact that a brief exposure to PACAP causes both c-fos gene expression and promotes cell survival strongly suggests that c-fos is involved in the trophic effect of PACAP on immature cerebellar granule cells.  相似文献   

16.
The induction of T cell proliferation requires signals from the TCR and a co-receptor molecule, such as CD28, that activate parallel and partially cross-reactive signaling pathways. These pathways are disrupted by agonists that utilize adenylate cyclase and cAMP-dependent protein kinase A (PKA). We found that the adenylate cyclase activator, forskolin, inhibits anti-CD3-induced shift in Lck electrophoretic mobility, suggesting an intervention at the TCR-coupled phosphoinositide turnover that precedes the activation of PKC. The shift of Lck following direct PKC activation by 12-O-tetradecanoyl phorbol 13-acetate, which bypasses early receptor-triggered biochemical events, is insensitive to forskolin. Nevertheless, forskolin also inhibits PKC downstream events, such as c-jun expression, which is critical for the activation process of T cells. To further analyze potential cross points between positively and negatively regulating signaling pathways in T cells, we tested the effects of activators of the adenylate cyclase or PKA on two parallel mitogen-activated protein kinase signaling pathways mediated by extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase. Using a PKC-specific inhibitor, GF109203X, or PKC-depleted T cells, we found that a large part of the anti-CD3-induced ERK activation is PKC dependent. Both PKC-dependent and -independent activation of ERK were sensitive to inhibition by forskolin or a cell-permeable cAMP analogue, dbcAMP. Furthermore, the effect of 12-O-tetradecanoyl phorbol 13-acetate and ionomycin, which synergized to fully activate c-Jun N-terminal kinase, was also sensitive to inhibition by forskolin. Our results suggest that PKA inhibits T cell activation by interfering with multiple events along the two signaling pathways operating downstream of the TCR and the CD28 co-receptor molecules.  相似文献   

17.
18.
We stably expressed the rat D1A dopamine receptor in mouse fibroblast LTK- cells and obtained specific ligand binding and functional activity characteristic of the D1A dopamine receptor coupled to stimulation of adenylyl cyclase. In the transfected cells, the selective D1 agonist fenoldopam caused a concentration-dependent inhibition of Na+/K(+)-ATPase activity, achieving maximum inhibition of approximately 30%. The latter was abolished by the selective D1 antagonist (+)-SCH 23390 and by the specific protein kinase A inhibitor protein kinase inhibitor-(6-22) amide. In the nontransfected cells, fenoldopam did not affect Na+/K(+)-ATPase activity. 8-Chlorophenylthio-cAMP inhibited Na+/K(+)-ATPase activity in both transfected and nontransfected cells; this effect was blocked by protein kinase inhibitor-(6-22). These results indicate that the inhibition of Na+/K(+)-ATPase activity induced by agonist occupancy of D1A receptors is mediated by protein kinase A.  相似文献   

19.
We have shown previously that protein kinase A (PKA) subunit levels are regulated by activation of PKA or protein kinase C (PKC) in anterior pituitary cells. GnRH also influenced PKA subunit levels, suggesting that hormonal regulation occurs in gonadotrophs, and therefore, we have reexamined this question using the clonal gonadotrope-derived cell line (alphaT3-1 cells). Western blot analysis, using specific immunoaffinity purified immunoglobulins, revealed expression of catalytic (Cat) and regulatory type I (RI) and type II (RII) subunits of PKA in these cells. Activation of adenylyl cyclase (AC) with forskolin, or of PKC with tetradecanoyl phorbol acetate (TPA), caused a rapid (detectable at 0.5-1 h) and concentration-dependent loss of all PKA subunits. Forskolin (10-100 microM) reduced Cat and RI by 60% and RII by 30%, whereas TPA (0.1-1 microM) reduced Cat and RII by 50% and RI by 40%. Simultaneous activation of PKA and PKC caused the expected dose-dependent reductions in Cat, and the effects of forskolin or TPA were nearly additive. RI and RII were reduced similarly by 10 nM TPA, whereas 100 nM TPA tended to prevent the reduction of RI or RII caused by forskolin. GnRH, which activates phosphoinositidase C and not AC in these cells, caused a clear loss of Cat or RII at all concentrations tested and of RI at 0.1 nM. Pituitary adenylate cyclase-activating polypeptide 38, which acts via PVR-1 receptors to stimulate both phosphoinositidase C and AC in these cells, also caused a clear dose-dependent decrease in Cat, RI, and RII, although higher concentrations were needed for the latter effects. Together, the data demonstrate that catalytic and regulatory subunits of PKA are subject to both hormonal and receptor-independent regulation in alphaT3-1 cells, reinforcing the possibility that such effects occur in nonimmortalized gonadotropes. Whereas the effects of PKA activators very likely involve proteolytic degradation of the dissociated PKA holoenzyme, the effects of TPA and GnRH occur in the absence of cAMP elevation by unknown mechanisms. Whatever the mechanisms involved, the data reveal a mechanism for cross-talk between phosphoinositidase C and AC-mediated hormonal signals, in which PKC activation seems to play a pivotal role.  相似文献   

20.
We have isolated Schizosaccharomyces pombe genes that confer sterility to the fission yeast cell when expressed from a multicopy plasmid. One of these genes strongly hybridized to a probe carrying the open reading frame of Saccharomyces cerevisiae TPK1, which encodes a catalytic subunit of the cAMP-dependent protein kinase (protein kinase A). This S. pombe gene, named pka1, has a coding potential of 512 amino acids, and the deduced gene product is 60% identical with the S. cerevisiae Tpk1 protein in the C-terminal 320 amino acids. Disruption of pka1 slows cell growth but is not lethal. The resultant cells, however, are highly derepressed for sexual development, readily undergoing conjugation and sporulation in the absence of nitrogen starvation. They are, thus, phenotypically indistinguishable from the adenylyl cyclase-defective (cyr1-) cells previously characterized, except that the pka1- spores are retarded in germination, whereas the cyr1- spores are not. Disruption of pka1 is epistatic to a defect in cgs1, which encodes the regulatory subunit of protein kinase A. These results strongly suggest that the product of pka1 is a catalytic subunit of protein kinase A and, furthermore, that S. pombe has only one gene encoding it. This situation contrasts with the case of S. cerevisiae, in which three genes encode the catalytic subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号