首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The branched-chain fatty acid phytanic acid is a constituent of the diet, present in diary products, meat and fish. Degradation of this fatty acid in the human body is preceded by activation to phytanoyl-CoA and starts with one cycle of alpha-oxidation. Intermediates in this pathway are 2-hydroxy-phytanoyl-CoA and pristanal; the product is pristanic acid. After activation, pristanic acid is degraded by peroxisomal beta-oxidation. Several disorders have been described in which phytanic acid accumulates, in some cases in combination with pristanic acid. In classical Refsum disease, the enzyme that converts phytanoyl-CoA into 2-hydroxyphytanoyl-CoA--phytanoyl-CoA hydroxylase--is deficient, resulting in highly elevated levels of phytanic acid in blood and tissues. Also in rhizomelic chondrodysplasia punctata, phytanic acid accumulates, owing to a deficiency in the peroxisomal import of proteins with a peroxisomal targeting sequence type 2. In patients affected with generalized peroxisomal disorders, degradation of both phytanic acid and pristanic acid is impaired owing to absence of functional peroxisomes. In bifunctional protein deficiency, the disturbed oxidation of pristanic acid results in elevated levels of this fatty acid and a secondary elevation of phytanic acid. In addition, several variant peroxisomal disorders with unknown aetiology have been described in which phytanic acid and/or pristanic acid accumulate. This review describes the discovery of phytanic acid and pristanic acid and the initial attempts to elucidate the origins and fates of these fatty acids. The current knowledge on the alpha-oxidation and beta-oxidation of these branched-chain fatty acids is summarized. The disorders in which phytanic acid and/or pristanic acid accumulate are described and some remarks are made on the pathogenic mechanisms of elevated levels of phytanic acid and pristanic acid.  相似文献   

2.
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a branched-chain fatty acid which accumulates in a number of inherited diseases in human. Because beta-oxidation is blocked by the methyl group at C-3, phytanic acid first undergoes decarboxylation via an alpha-oxidation mechanism. The structure and subcellular localization of the phytanic acid alpha-oxidation pathway have remained enigmatic through the years, although they have generally been assumed to involve phytanic acid and not its CoA-ester. This view has recently been challenged by the findings that in rat liver phytanic acid first has to be activated to its CoA-ester before alpha-oxidation and by the discovery of a new enzyme, phytanoyl-CoA hydroxylase, which converts phytanoyl-CoA to 2-hydroxyphytanoyl-CoA. We now show that this newly discovered enzyme is also present in human liver. Furthermore, we show that this enzyme is located in peroxisomes and deficient in liver from Zellweger patients who lack morphologically distinguishable peroxisomes, which provides an explanation for the long-known deficient oxidation of phytanic acid in these patients. These results suggest that phytanic acid alpha-oxidation is peroxisomal and that it utilizes the coenzyme A derivative as substrate, thus giving further support in favour of the new, revised pathway of phytanic acid alpha-oxidation.  相似文献   

3.
We studied the alpha-oxidation of phytanic acid in human fibroblasts of controls and patients affected with classical Refsum disease, rhizomelic chondrodysplasia punctata, generalized peroxisomal disorders and peroxisomal bifunctional protein deficiency. Cultured fibroblasts were incubated with phytanic acid, after which medium and cells were collected separately. 2-Hydroxyphytanic acid and pristanic acid were measured in the medium and cells by stable isotope dilution gas chromatography mass spectrometry. In controls, 2-hydroxyphytanic acid and pristanic acid could be detected in the medium after incubation with phytanic acid, proving that alpha-oxidation of phytanic acid via 2-hydroxyphytanoyl-CoA to pristanic acid was active and intermediates were excreted into the medium. In cells from patients with a defective alpha-oxidation (Refsum disease, rhizomelic chondrodysplasia punctata and generalized peroxisomal disorders) 2-hydroxyphytanic acid and pristanic acid were low or not detectable, showing that in these disorders the hydroxylation of phytanoyl-CoA to 2-hydroxyphytanoyl-CoA is deficient. In cells with a peroxisomal beta-oxidation defect, 2-hydroxyphytanic acid and pristanic acid were formed in amounts comparable to those in the controls.  相似文献   

4.
Twin brothers were born with clinical symptoms indicating that they were suffering from Zellweger syndrome. However, instead of a generalized peroxisomal dysfunction, only very long-chain fatty acids and the pristanic acid/phytanic acid ratio were elevated in plasma and decreased oxidation of very long-chain fatty acids and pristanic acid was the only impairment found in fibroblasts. The other peroxisomal parameters tested were normal, including normal oxidation of phytanic acid and normal activity of dihydroxyacetonephosphate acyltransferase in fibroblasts as well as normal plasma bile acids. Although the biochemical results point to a defect in peroxisomal beta-oxidation, the isolated finding of impaired oxidation of very long-chain fatty acids and pristanic acid has to our knowledge not been reported previously and is difficult to explain by a deficiency of a known peroxisomal beta-oxidation enzyme.  相似文献   

5.
The ubiquitous distribution of peroxisomes and the identification of a number of inherited diseases associated with peroxisomal dysfunction indicate that peroxisomes play an essential part in cellular metabolism. Some of the most important metabolic functions of peroxisomes include the synthesis of plasmalogens, bile acids, cholesterol and dolichol, and the oxidation of fatty acids (very long chain fatty acids > C22, branched chain fatty acids (e.g. phytanic acid), dicarboxylic acids, unsaturated fatty acids, prostaglandins, pipecolic acid and glutaric acid). Peroxisomes are also responsible for the metabolism of purines, polyamines, amino acids, glyoxylate and reactive oxygen species (e.g. O-2 and H2O2). Peroxisomal diseases result from the dysfunction of one or more peroxisomal metabolic functions, the majority of which manifest as neurological abnormalities. The quantitation of peroxisomal metabolic functions (e.g. levels of specific metabolites and/or enzyme activity) has become the basis of clinical diagnosis of diseases associated with the organelle. The study of peroxisomal diseases has also contributed towards the further elucidation of a number of metabolic functions of peroxisomes.  相似文献   

6.
Peroxisomes were long believed to play only a minor role in cellular metabolism but it is now clear that they catalyze a number of important functions. The importance of peroxisomes in humans is stressed by the existence of a group of genetic diseases in man in which one or more peroxisomal functions are impaired. Most of the functions known to take place in peroxisomes have to do with lipids. Indeed, peroxisomes are capable of 1. fatty acid beta-oxidation 2. fatty acid alpha-oxidation 3. synthesis of cholesterol and other isoprenoids 4. ether-phospholipid synthesis and 5. biosynthesis of polyunsaturated fatty acids. In Chapters 2-6 we will discuss the functional organization and enzymology of these pathways in detail. Furthermore, attention is paid to the permeability properties of peroxisomes with special emphasis on recent studies which suggest that peroxisomes are closed structures containing specific membrane proteins for transport of metabolites. Finally, the disorders of peroxisomal lipid metabolism will be discussed.  相似文献   

7.
In the final reaction of peroxisomal alpha-oxidation of 3-methyl-branched fatty acids a 2-hydroxy-3-methylacyl-CoA intermediate is cleaved to formyl-CoA and a hitherto unidentified product. The release of formyl-CoA suggests that the unidentified product may be a fatty aldehyde. When purified rat liver peroxisomes were incubated with 2-hydroxy-3-methylhexadecanoyl-CoA 2-methylpentadecanal was indeed formed. The production rates of formyl-CoA (measured as formate) and of the aldehyde were in the same range. While the production of formate remained unaltered in the presence of NAD+, the amount of 2-methylpentadecanal was decreased, which was accompanied by the formation of 2-methylpentadecanoic acid. These data indicate that (1) during alpha-oxidation the 2-hydroxy-3-methylacyl-CoA is cleaved to a 2-methyl-branched aldehyde and formyl-CoA and (2) liver peroxisomes are capable of converting this aldehyde to a 2-methyl-branched fatty acid.  相似文献   

8.
Studies with purified subcellular organelles from rat liver indicate that nervonic acid (C24:1) is beta-oxidized preferentially in peroxisomes. Lack of effect by etomoxir, inhibitor of mitochondrial beta-oxidation, on beta-oxidation of lignoceric acid (C24:0), a peroxisomal function, and that of nervonic acid (24:1) compared to the inhibition of palmitic acid (16:0) oxidation, a mitochondrial function, supports the conclusion that nervonic acid is oxidized in peroxisomes. Moreover, the oxidation of nervonic and lignoceric acids was deficient in fibroblasts from patients with defects in peroxisomal beta-oxidation [Zellweger syndrome (ZS) and X-linked adrenoleukodystrophy (X-ALD)]. Similar to lignoceric acid, the activation and beta-oxidation of nervonic acid was deficient in peroxisomes isolated from X-ALD fibroblasts. Transfection of X-ALD fibroblasts with human cDNA encoding for ALDP (X-ALD gene product) restored the oxidation of both nervonic and lignoceric acids, demonstrating that the same molecular defect may be responsible for the abnormality in the oxidation of nervonic as well as lignoceric acid. Moreover, immunoprecipitation of activities for acyl-CoA ligase for both lignoceric acid and nervonic acid indicate that saturated and monoenoic very long chain (VLC) fatty acids may be activated by the same enzyme. These results clearly demonstrate that similar to saturated VLC fatty acids (e.g., lignoceric acid), VLC monounsaturated fatty acids (e.g., nervonic acid) are oxidized preferentially in peroxisomes and that this activity is impaired in X-ALD. In view of the fact that the oxidation of unsaturated VLC fatty acids is defective in X-ALD patients, the efficacy of dietary monoene therapy, "Lorenzo's oil," in X-ALD needs to be evaluated.  相似文献   

9.
In Saccharomyces cerevisiae the metabolic degradation of saturated fatty acids is exclusively confined to peroxisomes. In addition to a functional beta-oxidation system, the degradation of unsaturated fatty acids requires auxiliary enzymes, including a Delta2, Delta3-enoyl-CoA isomerase and an NADPH-dependent 2,4-dienoyl-CoA reductase. We found both enzymes to be present in yeast peroxisomes. The impermeability of the peroxisomal membrane for pyrimidine nucleotides led to the question of how the NADPH needed by the reductase is regenerated in the peroxisomal lumen. We report the identification and functional analysis of the IDP3 gene product, which is a yeast peroxisomal NADP-dependent isocitrate dehydrogenase. The newly identified peroxisomal protein is homologous to the mitochondrial Idp1p and cytosolic Idp2p, which both are yeast NADP-dependent isocitrate dehydrogenases. Yeast cells lacking Idp3p grow normally on saturated fatty acids, but growth is impaired on unsaturated fatty acids, indicating that the peroxisomal Idp3p is involved in their metabolic utilization. The data presented are consistent with the assumption that peroxisomes of S. cerevisiae contain the enzyme equipment needed for the degradation of unsaturated fatty acids, including an NADP-dependent isocitrate dehydrogenase, a putative constituent of a peroxisomal NADPH-regenerating redox system.  相似文献   

10.
In mammals including man, peroxisomes play a pivotal role in the breakdown of various carboxylates via beta-oxidation. Physiological substrates include very long chain fatty acids (e.g. lignoceric acid), medium and long chain dicarboxylic acids, certain polyunsaturated fatty acids, 2-methylbranched isoprenoid-derived fatty acids (e.g. pristanic acid), prostanoids (prostaglandins, leukotrienes thromboxanes), and bile acid intermediates (di- and trihydroxycoprostanic acid). Substrate spectrum and specificity studies of the four different beta-oxidation steps in rat and man indicate that these carboxylates, in contrast to previous belief, are degraded by separate systems composed of different enzymes. Bile acid intermediates are degraded in hepatic peroxisomes via 2-methylacyl-CoA racemase, trihydroxycoprostanoyl-CoA oxidase (in rat) or branched acyl-CoA oxidase (in man), D-specific multifunctional protein 2 (MFP 2) and sterol carrier protein X/thiolase. beta-oxidation of pristanic acid can occur in all tissues and relies on the action of 2-methylacyl-CoA racemase (for the 2R-isomer), pristanoyl-CoA oxidase (in rat) or branched chain acyl-CoA oxidase (in man), D-specific multifunctional protein 2 (MFP 2) and sterol carrier protein X/thiolase. The enzymes catalyzing the breakdown of straight chain fatty acids are palmitoyl-CoA oxidase, L-specific multifunctional protein 1 (MFP 1) and the dimeric thiolase. These enzymes are present in all tissues and are identical to those initially characterized in hepatic peroxisomes. Due to the presence of peroxisome targeting signals in all the above mentioned proteins, they are localised in the cytosolic or absent (due to proteolysis) in tissues of patients with a generalized peroxisome deficiency (e.g. Zellweger syndrome). In addition to these lethal inherited disorders that are caused by defects in the biogenesis of peroxisomes, a growing number of patients with peroxisomal beta-oxidation deficiencies have been described. The implications of the presence of separate beta-oxidation systems for the latter disorders is quite profound and calls, in many cases, for a reevaluation of the diagnosis of such patients.  相似文献   

11.
1. Formation of acyl-coenzymes (Co)A occurs as an obligatory step in the metabolism of a variety of endogenous substrates, including fatty acids. The reaction is catalysed by ATP-dependent acid:CoA ligases (EC 6.2.1.1-2.1.3; AMP forming), classified on the basis of their ability to conjugate saturated fatty acids of differing chain lengths, short (C2-C4), medium (C4-C12) and long (C10-C22). The enzymes are located in various cell compartments (cytosol, smooth endoplasmic reticulum, mitochondria and peroxisomes) and exhibit wide tissue distribution, with highest activity associated with liver and adipose tissue. 2. Formation of acyl-CoA is not unique to endogenous substrates, but also occurs as an obligatory step in the metabolism of some xenobiotic carboxylic acids. The mitochondrial medium-chain CoA ligase is principally associated with metabolism via amino acid conjugation and activates substrates such as benzoic and salicylic acids. Although amino acid conjugation was previously considered an a priori route of metabolism for xenobiotic-CoA, it is now recognized that these highly reactive and potentially toxic intermediates function as alternative substrates in pathways of intermediary metabolism, particularly those associated with lipid biosyntheses. 3. In addition to a role in fatty acid metabolism, the hepatic microsomal and peroxisomal long-chain-CoA-ligases have been implicated in the formation of the acyl-CoA thioesters of a variety of hypolipidaemic and peroxisome proliferating agents (e.g. clofibric acid) and of the R(-)-enantiomers of the commonly used 2-arylpropionic acid non-steroidal anti-inflammatory drugs (e.g. ibuprofen). In vitro kinetic studies using rat hepatic microsomes and peroxisomes have alluded to the possibility of xenobiotic-CoA ligase multiplicity. Although cDNA encoding a long-chain ligase have been isolated from rat and human liver, there is currently no molecular evidence of multiple isoforms. The gene has been localized to chromosome 4 and homology searches have revealed a significant similarity with enzymes of the luciferase family. 4. Increasing recognition that formation of a CoA conjugate increases chemical reactivity of xenobiotic carboxylic acids has led to an awareness that the relative activity, substrate specificity and intracellular location of the xenobiotic-CoA ligases may explain differences in toxicity. 5. Continued characterization of the human xenobiotic-CoA ligases in terms of substrate/inhibitor profiles and regulation, will allow a greater understanding of the role of these enzymes in the metabolism of carboxylic acids.  相似文献   

12.
In the yeast Saccharomyces cerevisiae, fatty acid beta-oxidation is restricted to peroxisomes. Previous studies have shown two possible routes by which fatty acids enter the peroxisome. The first route involves transport of medium-chain fatty acids across the peroxisomal membrane as free fatty acids, followed by activation within the peroxisome by Faa2p, an acyl-CoA synthetase. The second route involves transport of long-chain fatty acids. Long-chain fatty acids enter the peroxisome via a route that involves activation in the extraperoxisomal space, followed by transport across the peroxisomal membrane. It has been suggested that this transport is dependent upon the peroxisomal ATP-binding-cassette transporters Pxa1p and Pxa2p. In this paper we investigated whether Pxa2p is directly responsible for the transport of C18:1-CoA, a long-chain acyl-CoA ester. Using protoplasts in which the plasma membrane has been selectively permeabilised by digitonin, we show that C18:1-CoA, but not C8:0-CoA, enters the peroxisome via Pxa2p, in an ATP-dependent fashion. The results obtained may contribute to the elucidation of the primary defect in the human disease X-linked adrenoleukodystrophy.  相似文献   

13.
Hepatic coenzyme A (CoA) plays an important role in cellular lipid metabolism. Because mitochondria and peroxisomes represent the two major subcellular sites of lipid metabolism, the present study was designed to investigate the specific impact of hepatic CoA deficiency on peroxisomal as well as mitochondrial beta-oxidation of fatty acids. CoA deficiency (47% decrease in free CoA and 23% decrease in total CoA) was produced by maintaining weanling male Sprague-Dawley rats on a semipurified diet deficient in pantothenic acid (the precursor of CoA) for 5 weeks. Hepatic mitochondrial fatty acid oxidation of short-chain and long-chain fatty acids were not significantly different between control and CoA-deficient rats. Conversely, peroxisomal beta-oxidation was significantly diminished (38% inhibition) in livers of CoA-deficient rats compared to control animals. Peroxisomal beta-oxidation was restored to normal levels when hepatic CoA was replenished. It is postulated that since the role of hepatic mitochondrial beta-oxidation is energy production while peroxisomal beta-oxidation acts mainly as a detoxification system, the mitochondrial pathway of beta-oxidation is spared at the expense of the peroxisomal pathway when liver CoA plummets. The present study may offer an animal model to investigate mechanisms involved in peroxisomal diseases.  相似文献   

14.
In this paper we describe isolation and molecular characterization of human dihydroxyacetonephosphate acyltransferase (DAP-AT). The enzyme was extracted from rabbit Harderian gland peroxisomes and isolated as a trimeric complex by sucrose density gradient centrifugation. From peptide sequences matching EST-clones were obtained which allowed cloning and sequencing of the cDNA from a human cDNA library. The nucleotide-derived amino acid sequence revealed a protein consisting of 680 amino acid residues of molecular mass 77187 containing a C-terminal type 1 peroxisomal targeting signal. Monospecific antibodies raised against this polypeptide efficiently immunoprecipitated DAP-AT activity from solubilized peroxisomal preparations, thus demonstrating that the cloned cDNA codes for DAP-AT.  相似文献   

15.
Human (HepG2) and rat (MH1C1) hepatoblastoma cells were incubated with different concentrations of the hypolipidaemics cetaben, clofibrate and thyroxine. The enzymatic activities of catalase, peroxisomal bifunctional enzyme, succinate dehydrogenase, and 3-oxoacyl-CoA thiolase were measured. In order to determine the point of regulation of the enzymatic activities Northern and Slot blot experiments with probes for peroxisomal bifunctional enzyme, catalase and fatty acyl CoA oxidase were performed on total RNA. Catalase activity was enhanced in HepG2 cells treated with 3 mmol/l clofibric acid to 135% of control and the mRNA value to 2.6 fold, whereas in cetaben treated cells the enhancement (up to 119% of control) was less pronounced. In MH1C1 cells catalase activity was not changed by any of the drugs. The activity of the peroxisomal bifunctional enzyme was not affected in HepG2 cells by clofibric acid and cetaben, whereas the mRNA level was elevated to 2.3 fold by 10 micromol/l cetaben. At high concentrations of cetaben all enzyme activities were decreased in both cell lines due to its high cytotoxicity. Our data show that, due to the differences in the genomic organisation, the regulation of the enzyme activities is different in human and rat, but the results from the human and rat hepatoblastoma cells correlate with the findings in whole man and rat, so that a human in vitro system is more suitable for pharmacological tests. These results suggest that the human hepatoma cell line HepG2 may be a useful model system for studies of the influence of hypolipidaemics on the peroxisomal enzyme system.  相似文献   

16.
Peroxisomes play an indispensible role in ether lipid biosynthesis as evidenced by the deficiency of ether phospholipids in fibroblasts and tissues from patients suffering from a number of peroxisomal disorders. Alkyl-dihydroxyacetonephosphate synthase, a peroxisomal enzyme playing a key role in the biosynthesis of ether phospholipids, contains the peroxisomal targeting signal type 2 in a N-terminal cleavable presequence. Using a polyclonal antiserum raised against alkyl-dihydroxyacetonephosphate synthase, levels of this enzyme were examined in fibroblast cell lines from patients affected by peroxisomal disorders. Strongly reduced levels were found in fibroblasts of Zellweger syndrome and rhizomelic chondrodysplasia punctata patients, indicating that the enzyme is not stable in the cytoplasm as a result of defective import into peroxisomes. In a neonatal adrenoleukodystrophy patient with an isolated import deficiency of proteins carrying the peroxisomal targeting signal type 1, the precursor form of alkyl-dihydroxyacetonephosphate synthase was detected at a level comparable to that of the mature form in control fibroblasts, in line with an intraperoxisomal localization. A patient with an isolated deficiency in alkyl-dihydroxyacetonephosphate (DHAP) synthase activity had normal levels of this protein. Analysis at the cDNA level revealed a missense mutation leading to a R419H substitution in the enzyme of this patient. Expression of a recombinant protein carrying this mutation in Escherichia coli yielded an inactive enzyme, whereas a comparable control recombinant enzyme was active, providing further proof that this substitution is responsible for the inactivity of the enzyme and the phenotype. In line with this result is the observation that wild-type alkyl-DHAP synthase activity can be inactivated by the arginine-modifying agent phenylglyoxal. The enzyme is efficiently protected against this inactivation when the substrate palmitoyl-DHAP is present at a saturating concentration. The gene encoding human alkyl-dihydroxyacetonephosphate synthase was mapped on chromosome 2q31.  相似文献   

17.
Zellweger syndrome is a prototype of peroxisomal biogenesis disorders and a fatal autosomal recessive disease with no effective therapy. We identified nine genetic complementation groups of these disorders, and mutations in peroxisome assembly factor-1 (PAF-1) and the 70-kD peroxisomal membrane protein (PMP70) genes have been detected by our group F and Roscher's group 1, respectively. We now describe permanent recovery from generalized peroxisomal abnormalities in fibroblasts of a Zellweger patient from group F, such as biochemical defects of peroxisomal beta-oxidation, plasmalogen biosynthesis, and morphologic absence of peroxisomes, by stable transfection of human cDNA encoding PAF-1. In the light of these observations, we designed a gene expression system using fibroblasts from patients with peroxisomal biogenesis disorders. In Zellweger fibroblasts obtained from Roscher's group 1 and transfected with human cDNA encoding PMP70, peroxisomes were not morphologically identifiable, and peroxisomal function did not normalize.  相似文献   

18.
1. Cetaben in contrast to fibrates affect differently peroxisomal constituents. 2. Changes in large scale of liver non-peroxisomal parameters were compared after 10 days administration of equal doses (200 mg/kg/day) of cetaben and clofibric acid to male Wistar rats. 3. Clofibric acid treatment increased markedly the activities of FAD-glycerol-3-P dehydrogenase, beta-hydroxyacyl-CoA dehydrogenase, cytochrome-c oxidase, malic enzyme, NAD-glycerol-3-P dehydrogenase, ethoxycoumarin deethylase, p-nitroanisole demethylase and amounts of cytochrome P-450 and b5. 4. However no analogical changes were observed after cetaben treatment in the livers of experimental animals. 5. Both drugs increased the activities of alanine-glyoxylate aminotransferase-1 and acetylcarnitine transferase--enzymes with proven mitochondrial and peroxisomal location. 6. Cetaben contrary to clofibric acid does not increase solubilization of peroxisomal enzymes. 7. Enhanced acetylcarnitine transferase and alanine-glyoxylate aminotransferase-1 activities were distributed in mitochondria as well as in peroxisomes after clofibric acid treatment, however, only peroxisomes were enriched after cetaben administration. 8. The results obtained suggest that cetaben represents an exceptional type of peroxisome proliferator, specifically affecting peroxisomes, without having a negative influence on the processes of peroxisome biogenesis.  相似文献   

19.
Zellweger syndrome and related diseases are caused by defective import of peroxisomal matrix proteins. In all previously reported Zellweger syndrome cell lines the defect could be assigned to the matrix protein import pathway since peroxisome membranes were present, and import of integral peroxisomal membrane proteins was normal. However, we report here a Zellweger syndrome patient (PBD061) with an unusual cellular phenotype, an inability to import peroxisomal membrane proteins. We also identified human PEX16, a novel integral peroxisomal membrane protein, and found that PBD061 had inactivating mutations in the PEX16 gene. Previous studies have suggested that peroxisomes arise from preexisting peroxisomes but we find that expression of PEX16 restores the formation of new peroxisomes in PBD061 cells. Peroxisome synthesis and peroxisomal membrane protein import could be detected within 2-3 h of PEX16 injection and was followed by matrix protein import. These results demonstrate that peroxisomes do not necessarily arise from division of preexisting peroxisomes. We propose that peroxisomes may form by either of two pathways: one that involves PEX11-mediated division of preexisting peroxisomes, and another that involves PEX16-mediated formation of peroxisomes in the absence of preexisting peroxisomes.  相似文献   

20.
Zellweger syndrome is a peroxisomal biogenesis disorder that results in abnormal neuronal migration in the central nervous system and severe neurologic dysfunction. The pathogenesis of the multiple severe anomalies associated with the disorders of peroxisome biogenesis remains unknown. To study the relationship between lack of peroxisomal function and organ dysfunction, the PEX2 peroxisome assembly gene (formerly peroxisome assembly factor-1) was disrupted by gene targeting. Homozygous PEX2-deficient mice survive in utero but die several hours after birth. The mutant animals do not feed and are hypoactive and markedly hypotonic. The PEX2-deficient mice lack normal peroxisomes but do assemble empty peroxisome membrane ghosts. They display abnormal peroxisomal biochemical parameters, including accumulations of very long chain fatty acids in plasma and deficient erythrocyte plasmalogens. Abnormal lipid storage is evident in the adrenal cortex, with characteristic lamellar-lipid inclusions. In the central nervous system of newborn mutant mice there is disordered lamination in the cerebral cortex and an increased cell density in the underlying white matter, indicating an abnormality of neuronal migration. These findings demonstrate that mice with a PEX2 gene deletion have a peroxisomal disorder and provide an important model to study the role of peroxisomal function in the pathogenesis of this human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号