首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibration reduction is of great importance in various engineering applications, and a material that exhibits good vibration damping along with high strength and modulus has become more and more vital. Owing to the superior mechanical property of carbon nanotube (CNT), new types of vibration damping material can be developed. This paper presents recent advancements, including our progresses, in the development of high‐damping macroscopic CNT assembly materials, such as forests, gels, films, and fibers. In these assemblies, structural deformation of CNTs, zipping and unzipping at CNT connection nodes, strengthening and welding of the nodes, and sliding between CNTs or CNT bundles are playing important roles in determining the viscoelasticity, and elasticity as well. Toward the damping enhancement, strategies for micro‐structure and interface design are also discussed.
  相似文献   

2.
Vibration damping characteristic of nanocomposites and carbon fiber reinforced polymer composites (CFRPs) containing multiwall carbon nanotubes (CNTs) have been studied using the free and forced vibration tests. Several vibration parameters are varied to characterize the damping behavior in different amplitudes, natural frequencies and vibration modes. The damping ratio of the hybrid composites is enhanced with the addition of CNTs, which is attributed to sliding at the CNT-matrix interfaces. The damping ratio is dependent on the amplitude as a result of the random orientation of CNTs in the epoxy matrix. The natural frequency shows negligible influence on the damping properties. The forced vibration test indicates that the damping ratios of the CFRP composites increase with increasing CNT content in both the 1st and 2nd vibration modes. The CNT-epoxy nanocomposites also show similar increasing trends of damping ratio with CNT content, indicating the enhanced damping property of CFRPs arising mainly from the improved damping property of the modified matrix. The dynamic mechanical analysis further confirms that the CNTs have a strong influence on the composites damping properties. Both the dynamic loss modulus and loss factor of the nanocomposites and the corresponding CFRPs show consistent increases with the addition of CNTs, an indication of enhanced damping performance.  相似文献   

3.
Carbon fiber (CF) grafted with a layer of carbon nanotubes (CNTs) plays an important role in composite materials and other fields; to date, the applications of CNTs@CF multiscale fibers are severely hindered by the limited amount of CNTs grafted on individual CFs and the weak interfacial binding force. Here, monolithic CNTs@CF fibers consisting of a 3D highly porous CNT sponge layer with macroscopic‐thickness (up to several millimeters), which is directly grown on a single CF, are fabricated. Mechanical tests reveal high sponge–CF interfacial strength owing to the presence of a thin transitional layer, which completely inhibits the CF slippage from the matrix upon fracture in CNTs@CF fiber–epoxy composites. The porous conductive CNTs@CF hybrid fibers also act as a template for introducing active materials (pseudopolymers and oxides), and a solid‐state fiber‐shaped supercapacitor and a fiber‐type lithium‐ion battery with high performances are demonstrated. These CNTs@CF fibers with macroscopic CNT layer thickness have many potential applications in areas such as hierarchically reinforced composites and flexible energy‐storage textiles.  相似文献   

4.
The superb mechanical and physical properties of individual carbon nanotubes (CNTs) have provided the impetus for researchers in developing high‐performance continuous fibers based upon CNTs. The reported high specific strength, specific stiffness and electrical conductivity of CNT fibers demonstrate the potential of their wide application in many fields. In this review paper, we assess the state of the art advances in CNT‐based continuous fibers in terms of their fabrication methods, characterization and modeling of mechanical and physical properties, and applications. The opportunities and challenges in CNT fiber research are also discussed.  相似文献   

5.
High precision electrospinning technique was used to obtain self-assembled carbon nano-tube (CNT) reinforced polyamide (PA) 6,6 fibers. The reinforcement factors were critically evaluated with respect to the effects of fiber diameter and inclusion of CNTs. The average fiber diameter ranged from 240 to 1400 nm and the CNT contents were 0, 1 and 2.5 wt%. A sharp increase in modulus and strength of the fibers was demonstrated when the size of the fiber was decreased below ∼500 nm, which could be attributed to ordered arrangement of crystals and the spatial confinement effect of the fibers. Also, investigation of the deformation behavior of fibers as a function of CNT content revealed that tensile fiber modulus and strength improved significantly with increase of CNTs. Addition of CNTs restricted the segmental motion of polymer chains and provided the confinement effect to the neighboring molecules.  相似文献   

6.
A chemical method to graft carbon nanotubes onto a carbon fiber   总被引:2,自引:0,他引:2  
A simple method is developed for grafting carbon nanotubes (CNTs) onto a carbon fiber surface. CNT and carbon fiber undergo an oxidation treatment. Oxidation generates oxygen, like carboxyl, carbonyl or hydroxyl groups, or amine groups on nanotubes and carbon fiber surface. Functionalized CNTs are dispersed in a solvent and deposited on carbon fibers. The bonds between CNT and carbon fiber are operated by esterification, anhydridation or amidization of the chemical surface groups. The resulting materials are characterized by scanning electron microscopy (SEM). CNTs form a 3D network around the carbon fibers. Likewise, CNT bonding between two fibers is observed.  相似文献   

7.
This study demonstrates that small amount of oxygen incorporated into carbon nanotubes (CNTs) during the purification process greatly increases their solubility in chlorosulfonic acid (CSA). Using as‐purchased and unpurified CNT powders, the optimal purification process is established to significantly increase the solubility of CNTs in CSA, and spin CNT fibers with high mechanical strength (0.84 N tex?1) and electrical conductivity (1.4 MS m?1) from the CNT liquid crystal dope with high concentration of CNTs in CSA. The knowledge obtained here may guide development of a way to dissolve extremely long CNTs at high concentration and thereby to enable production of CNT fibers with ultimate properties.  相似文献   

8.
Stimuli‐responsive porous polymer materials have promising biomedical application due to their ability to trap and release biomacromolecules. In this work, a class of highly porous electrospun fibers is designed using polylactide as the polymer matrix and poly(ethylene oxide) as a porogen. Carbon nanotubes (CNTs) with different concentrations are further impregnated onto the fibers to achieve self‐sealing functionality induced by photothermal conversion upon light irradiation. The fibers with 0.4 mg mL?1 of CNTs exhibit the optimum encapsulation efficiency of model biomacromolecules such as dextran, bovine serum albumin, and nucleic acids, although their photothermal conversion ability is slightly lower than the fibers with 0.8 mg mL?1 of CNTs. Interestingly, reversible reopening of the surface pores is accomplished with the degradation of PLA, affording a further possibility for sustained release of biomacromolecules after encapsulation. Effects of CNT loading on fiber morphology, structure, thermal/mechanical properties, degradation, and cell viability are also investigated. This novel class of porous electrospun fibers with self‐sealing capability has great potential to serve as an enabling strategy for trapping/release of biomacromolecules with promising applications in, for example, preventing inflammatory diseases by scavenging cytokines from interstitial body fluids.  相似文献   

9.
Because of the outstanding mechanical and electrical properties of carbon nanotubes (CNTs), a CNT‐based torsion pendulum is demonstrated to show great potential in nano‐electromechanical systems. It is also expected to achieve various manipulations for further characterization and increase device sensitivity using ultrlong CNTs and macroscale moving parts. However, the reported top‐down method limits the CNT performance and device size by introducing inevitable contamination and destruction, which greatly hinders the development of single‐molecule devices. Here, a bottom‐up method is introduced to fabricate heterostructures of anthracene flakes (AFs) and suspended CNTs, providing a nondamaging CNT mechanical measurement before further applications, especially for the twisting behavior, and providing a controllable and clean transfer method to fabricate CNT‐based electrical devices under ambient conditions. Based on the unique geometry of CNT/AF heterostructures, various complex manipulations of single‐CNT devices are conducted to investigate CNT mechanical properties and prompt novel applications of similar structures in nanotechnology. The AF‐decorated CNTs show high Young's modulus (≈1 TPa) and tensile strength (≈100 GPa), and can be considered as the finest and strongest torsional springs. CNT‐based torsion balance enables to measure fN‐level forces and the torsional spring constant is two orders of magnitude lower than previously reported values.  相似文献   

10.
The growth of carbon nanotubes (CNTs) on carbon fibers was conducted via chemical vapor deposition. A solution approach has been used to distribute nickel particles on the fiber, and the carbon source was a methane gas. The resulting CNTs are about 10 μm in length and 50 nm in outer diameter. After CNT growth, a fiber bundle was impregnated with an epoxy resin to form a unidirectional composite. Tensile tests were carried out, and the induced fracture surface was examined by microscopes. Three types of CNT fracture during fiber pullout are discussed. The results show that fracture in the CNT/fiber joint is the major mode. Pullout of CNTs was also observed. While pullout of fibers leaves micro-scale holes, pullout of CNTs leaves nano-scale holes. The multi-scale fracture behavior generates new parameters for material design and processing. Some concepts regarding the microstructural design for this special composite are discussed.  相似文献   

11.
Materials with an ultralow density and ultrahigh electromagnetic‐interference (EMI)‐shielding performance are highly desirable in fields of aerospace, portable electronics, and so on. Theoretical work predicts that 3D carbon nanotube (CNT)/graphene hybrids are one of the most promising lightweight EMI shielding materials, owing to their unique nanostructures and extraordinary electronic properties. Herein, for the first time, a lightweight, flexible, and conductive CNT–multilayered graphene edge plane (MLGEP) core–shell hybrid foam is fabricated using chemical vapor deposition. MLGEPs are seamlessly grown on the CNTs, and the hybrid foam exhibits excellent EMI shielding effectiveness which exceeds 38.4 or 47.5 dB in X‐band at 1.6 mm, while the density is merely 0.0058 or 0.0089 g cm?3, respectively, which far surpasses the best values of reported carbon‐based composite materials. The grafted MLGEPs on CNTs can obviously enhance the penetration losses of microwaves in foams, leading to a greatly improved EMI shielding performance. In addition, the CNT–MLGEP hybrids also exhibit a great potential as nano‐reinforcements for fabricating high‐strength polymer‐based composites. The results provide an alternative approach to fully explore the potentials of CNT and graphene, for developing advanced multifunctional materials.  相似文献   

12.
At the microscopic scale, carbon nanotubes (CNTs) combine impressive tensile strength and electrical conductivity; however, their macroscopic counterparts have not met expectations. The reasons are variously attributed to inherent CNT sample properties (diameter and helicity polydispersity, high defect density, insufficient length) and manufacturing shortcomings (inadequate ordering and packing), which can lead to poor transmission of stress and current. To efficiently investigate the disparity between microscopic and macroscopic properties, a new method is introduced for processing microgram quantities of CNTs into highly oriented and well‐packed fibers. CNTs are dissolved into chlorosulfonic acid and processed into aligned films; each film can be peeled and twisted into multiple discrete fibers. Fibers fabricated by this method and solution‐spinning are directly compared to determine the impact of alignment, twist, packing density, and length. Surprisingly, these discrete fibers can be twice as strong as their solution‐spun counterparts despite a lower degree of alignment. Strength appears to be more sensitive to internal twist and packing density, while fiber conductivity is essentially equivalent among the two sets of samples. Importantly, this rapid fiber manufacturing method uses three orders of magnitude less material than solution spinning, expanding the experimental parameter space and enabling the exploration of unique CNT sources.  相似文献   

13.
Fan L  Feng C  Zhao W  Qian L  Wang Y  Li Y 《Nano letters》2012,12(7):3668-3673
Superaligned carbon nanotube (CNT) yarn patterned substrates were developed as the topographic scaffold for guiding the neurite outgrowth. As-prepared patterned substrates were used for culturing rat hippocampal neurons, without purifying and functionalizing processes on the CNTs. The neurite outgrowth on the patterned substrate exhibited a strong tendency to being aligned along the CNT yarns long axes. The neurite grown along the CNT yarns had much less branching than the one on a uniform planar substrate typically used for neuron culture. These results indicate that the pure CNT yarns possess the main characteristics of a guidance scaffold for neurite outgrowth. Furthermore, the CNT yarns can be mass produced and be easily weaved into desired structures, which may make them attractive for neuronal regeneration and tissue engineering.  相似文献   

14.
Applications of carbon nanotubes (CNTs) in flexible and complementary metal‐oxide‐semiconductor (CMOS)‐based electronic and energy devices are impeded due to typically low CNT areal densities, growth temperatures that are incompatible with device substrates, and challenges in large‐area alignment and interconnection. A scalable method for continuous fabrication and transfer printing of dense horizontally aligned CNT (HA‐CNT) ribbon interconnects is presented. The process combines vertically aligned CNT (VA‐CNT) growth by thermal chemical vapor deposition, a novel mechanical rolling process to transform the VA‐CNTs to HA‐CNTs, and adhesion‐controlled transfer printing without needing a carrier film. The rolling force determines the HA‐CNT packing fraction and the HA‐CNTs are processed by conventional lithography. An electrical resistivity of 2 mΩ · cm is measured for ribbons having 800‐nm thickness, while the resistivity of copper is 100 times lower, a value that exceeds most CNT assemblies made to date, and significant improvements can be made in CNT structural quality. This rolling and printing process could be scaled to full wafer areas and more complex architectures such as continuous CNT sheets and multidirectional patterns could be achieved by straightforward design of the CNT growth process and/or multiple rolling and printing sequences.  相似文献   

15.
In this study carbon nanotubes (CNTs) were grown on carbon fibers to enhance the in-plane and out-of-plane properties of fiber reinforced polymer composites (FRPs). A relatively low temperature synthesis technique was utilized to directly grow CNTs over the carbon fibers. Several composites based on carbon fibers with different surface treatments (e.g. growing CNTs with different lengths and distribution patterns and coating the fibers with a thermal barrier coating (TBC) layer) were fabricated and characterized via on- and off-axis tensile tests. The on-axis tensile strength and ductility of the hybrid FRPs were improved by 11% and 35%, respectively, due to the presence of the TBC and the surface grown CNTs. This configuration also exhibited 16% improvement on the off-axis stiffness. Results suggest that certain CNT growth patterns and lengths are more pertinent than the other surface treatments to achieve superior mechanical properties.  相似文献   

16.
碳纳米管纤维作为一种新型纤维材料,具有传统纤维不具备的独特的组装结构特性,并因丰富的界面结构带来了诸多功能特性,使其在能源、电子、驱动等领域具有巨大的应用潜力。综述了碳纳米管组装结构特性和丰富的界面在多功能特性中的重要作用以及碳纳米管纤维在智能驱动应用中的研究进展,最后对未来新型结构功能一体化纤维材料的探索进行了展望。  相似文献   

17.
A simple process to spin fibers consisting of multi-walled carbon nanotubes (CNTs) directly from their lyotropic liquid-crystalline phase is reported. Ethylene glycol is used as the lyotropic solvent, enabling a wider range of CNT types to be spun than previously. Fibers spun with CNTs and nitrogen-doped CNTs are compared. X-ray analysis reveals that nitrogen-doped CNTs have a misalignment of only +/-7.8 degrees to the fiber axis. The tensile strength of the CNT and nitrogen-doped CNT fibers is comparable but the modulus and electrical conductivity of the are lower. The electrical conductivity of both types of CNT fibers is found to be highly anisotropic. The results are discussed in context of the microstructure of the CNTs and fibers.  相似文献   

18.
Inspired by biological materials, the use of combined fillers of different types and sizes has led to multiscale, hierarchical composites which are considered to be the multifunctional materials of the next generation. However, the effects of hierarchical architecture on the electrical properties and percolation behavior remain poorly understood. Here, a multiscale polymer‐based micro‐/nano‐composite with hollow glass fibers coated by carbon nanotubes (CNTs) has been produced based on a simple dip‐coating approach. Besides a significant increase in electrical performance, the composites exhibit a very strong anisotropy of electrical properties with the difference of 2–5 orders of magnitude in different directions. In the longitudinal direction of composites, an ultralow percolation threshold is found. These unique properties are shown to be related to the hierarchical morphology, which gives rise to the existence of two percolation levels with different thresholds: a local threshold in the nanoscale 2D CNT networks at the fiber‐polymer interfaces and a global threshold in 3D network formed by the fibers. This study helps to deeper understand the macroscopic electrical performance of the hierarchical composites, potentially opening up new ways for designing novel materials via flexible tailoring the orientation of fiber and the morphology of interfaces.
  相似文献   

19.
It is generally known that load transfer from the polymer matrix to carbon nanotubes (CNTs) can be greatly hindered due to the pristine CNT surface condition. This imperfect condition can have a profound influence on the effectiveness of CNT reinforcement. In order to address this issue in the context of viscoelastic response, an effective medium theory is first presented, and then applied to study the effect of interfacial sliding on the time-dependent creep, stress relaxation, strain-rate sensitivity, and storage and loss moduli of a multi-walled CNT/polypropylene nanocomposite. We show that, without accounting for the imperfect load transfer at the interface, the predicted creep compliances are too stiff, but with the introduction of a weakened interface, the measured creep curves at various CNT loading can be well captured. Both stress relaxation and stress–strain relations are also found to greatly depend on the interface condition. Under low-frequency harmonic loading our calculations also reveal that the interface condition is further weakened and that a larger interface sliding parameter is required to reflect the measured storage and tangent moduli. We conclude that the viscoelastic characteristics of a CNT nanocomposite are very sensitive to the interface condition, and that continued improvement in surface functionalization is necessary to realize the full potential of CNT reinforcement.  相似文献   

20.
The purpose of this article is to find a way to prepare multiscale material, namely, carbon nanotube-hybridized carbon fiber (CNT/CF) with a low degradation of mechanical properties. Using a facile aerosol-assisted chemical vapor deposition method, a novel route was described to fabricate CNT/CF. The essential of this technique was in situ formation of catalyst (Fe) nanoparticles via pyrolysis of ferrocene–acetone aerosol right before CNTs growth. Through optimizing aerosol supply and process parameters, a uniform coverage of CNTs was successfully grafted onto the carbon fiber surface to obtain a multiscale (hierarchical) structure. The strong anchorage between the as-synthesized CNTs and carbon fiber substrate was confirmed by ultrasonic bath treatment. Compared with the as-received carbon fibers, single fiber tensile testing results demonstrated that the tensile strengths of CNT-hybridized carbon fiber slightly degraded within 10% at all the correspondingly given gauge lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号