首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To date, it has been a great challenge to design high‐performance flexible energy storage devices for sufficient loading of redox species in the electrode assemblies, with well‐maintained mechanical robustness and enhanced electron/ionic transport during charge/discharge cycles. An electrochemical activation strategy is demonstrated for the facile regeneration of carbon nanotube (CNT) film prepared via floating catalyst chemical vapor deposition strategy into a flexible, robust, and highly conductive hydrogel‐like film, which is promising as electrode matrix for efficient loading of redox species and the fabrication of high‐performance flexible pseudosupercapacitors. The strong and conductive CNT films can be effectively expanded and activated by electrochemical anodic oxygen evolution reaction, presenting greatly enhanced internal space and surface wettability with well‐maintained strength, flexibility, and conductivity. The as‐formed hydrogel‐like film is quite favorable for electrochemical deposition of manganese dioxide (MnO2) with loading mass up to 93 wt% and electrode capacitance kept around 300 F g?1 (areal capacitance of 1.2 F cm?2). This hybrid film was further used to assemble a flexible symmetric pseudosupercapacitor without using any other current collectors and conductive additives. The assembled flexible supercapacitors exhibited good rate performance, with the areal capacitance of more than 300 mF cm?2, much superior to other reported MnO2 based flexible thin‐film supercapacitors.  相似文献   

2.
The well‐matched electrochemical parameters of positive and negative electrodes, such as specific capacitance, rate performance, and cycling stability, are important for obtaining high‐performance asymmetric supercapacitors. Herein, a facile and cost‐effective strategy is demonstrated for the fabrication of 3D densely stacked graphene (DSG) and graphene‐MnO2 (G‐MnO2) architectures as the electrode materials for asymmetric supercapacitors (ASCs) by using MnO2‐intercalated graphite oxide (GO‐MnO2) as the precursor. DSG has a stacked graphene structure with continuous ion transport network in‐between the sheets, resulting in a high volumetric capacitance of 366 F cm–3, almost 2.5 times than that of reduced graphene oxide, as well as long cycle life (93% capacitance retention after 10 000 cycles). More importantly, almost similar electrochemical properties, such as specific capacitance, rate performance, and cycling stability, are obtained for DSG as the negative electrode and G‐MnO2 as the positive electrode. As a result, the assembled ASC delivers both ultrahigh gravimetric and volumetric energy densities of 62.4 Wh kg–1 and 54.4 Wh L–1 (based on total volume of two electrodes) in 1 m Na2SO4 aqueous electrolyte, respectively, much higher than most of previously reported ASCs in aqueous electrolytes.  相似文献   

3.
The performance of pseudocapacitive electrodes at fast charging rates are typically limited by the slow kinetics of Faradaic reactions and sluggish ion diffusion in the bulk structure. This is particularly problematic for thick electrodes and electrodes highly loaded with active materials. Here, a surface-functionalized 3D-printed graphene aerogel (SF-3D GA) is presented that achieves not only a benchmark areal capacitance of 2195 mF cm−2 at a high current density of 100 mA cm−2 but also an ultrahigh intrinsic capacitance of 309.1 µF cm−2 even at a high mass loading of 12.8 mg cm−2. Importantly, the kinetic analysis reveals that the capacitance of SF-3D GA electrode is primarily (93.3%) contributed from fast kinetic processes. This is because the 3D-printed electrode has an open structure that ensures excellent coverage of functional groups on carbon surface and facilitates the ion accessibility of these surface functional groups even at high current densities and large mass loading/electrode thickness. An asymmetric device assembled with SF-3D GA as anode and 3D-printed GA decorated with MnO2 as cathode achieves a remarkable energy density of 0.65 mWh cm−2 at an ultrahigh power density of 164.5 mW cm−2, outperforming carbon-based supercapacitors operated at the same power density.  相似文献   

4.
Herein, bimetallic iron (Fe)–manganese (Mn) oxyhydroxide ((Fe1−x,Mnx)OOH, FeMnOOH) nanosheets on fluorine‐doped tin oxide conducting substrates and on semiconductor photoanodes are synthesized by a facile, room temperature, electroless deposition method as catalysts for both electrochemical and photo‐electrochemical (PEC) water splitting, respectively. Surprisingly, Mn‐doped FeOOH can significantly modulate the nanosheet morphology to increase the active surface area, boost more active sites, and augment the intrinsic activity by tuning the electronic structure of FeOOH. Due to the 2D nanosheet architecture, the optimized FeMnOOH exhibits superior electrochemical activity and outstanding durability for the oxygen evolution reaction with a low overpotential of 246 mV at 10 mA cm−2 and 414 mV at 100 mA cm−2, and long‐term stability for 40 h without decay, which is comparable to the best electrocatalysts for water oxidation reported in the literature. By integrating with semiconductor photoanodes (such as α‐Fe2O3 nanorod (NR) arrays), bimetallic FeMnOOH catalysts achieve solar‐driven water splitting with a significantly enhanced PEC performance (3.36 mA cm−2 at 1.23 V vs reversible hydrogen electrode (RHE)) with outstanding long‐term stability (≈8 h) compared to that of the bare Fe2O3 NR (0.92 mA cm−2 at 1.23 V vs RHE).  相似文献   

5.
A coaxial electrode structure composed of manganese oxide‐decorated TiC/C core/shell nanofiber arrays is produced hydrothermally in a KMnO4 solution. The pristine TiC/C core/shell structure prepared on the Ti alloy substrate provides the self‐sacrificing carbon shell and highly conductive TiC core, thus greatly simplifying the fabrication process without requiring an additional reduction source and conductive additive. The as‐prepared electrode exhibits a high specific capacitance of 645 F g?1 at a discharging current density of 1 A g?1 attributable to the highly conductive TiC/C and amorphous MnO2 shell with fast ion diffusion. In the charging/discharging cycling test, the as‐prepared electrode shows high stability and 99% capacity retention after 5000 cycles. Although the thermal treatment conducted on the as‐prepared electrode decreases the initial capacitance, the electrode undergoes capacitance recovery through structural transformation from the crystalline cluster to layered birnessite type MnO2 nanosheets as a result of dissolution and further electrodeposition in the cycling. 96.5% of the initial capacitance is retained after 1000 cycles at high charging/discharging current density of 25 A g?1. This study demonstrates a novel scaffold to construct MnO2 based SCs with high specific capacitance as well as excellent mechanical and cycling stability boding well for future design of high‐performance MnO2‐based SCs.  相似文献   

6.
The voltage limit for aqueous asymmetric supercapacitors is usually 2 V, which impedes further improvement in energy density. Here, high Na content Birnessite Na0.5MnO2 nanosheet assembled nanowall arrays are in situ formed on carbon cloth via electrochemical oxidation. It is interesting to find that the electrode potential window for Na0.5MnO2 nanowall arrays can be extended to 0–1.3 V (vs Ag/AgCl) with significantly increased specific capacitance up to 366 F g?1. The extended potential window for the Na0.5MnO2 electrode provides the opportunity to further increase the cell voltage of aqueous asymmetric supercapacitors beyond 2 V. To construct the asymmetric supercapacitor, carbon‐coated Fe3O4 nanorod arrays are synthesized as the anode and can stably work in a negative potential window of ?1.3 to 0 V (vs Ag/AgCl). For the first time, a 2.6 V aqueous asymmetric supercapacitor is demonstrated by using Na0.5MnO2 nanowall arrays as the cathode and carbon‐coated Fe3O4 nanorod arrays as the anode. In particular, the 2.6 V Na0.5MnO2//Fe3O4@C asymmetric supercapacitor exhibits a large energy density of up to 81 Wh kg?1 as well as excellent rate capability and cycle performance, outperforming previously reported MnO2‐based supercapacitors. This work provides new opportunities for developing high‐voltage aqueous asymmetric supercapacitors with further increased energy density.  相似文献   

7.
基因测序技术正处于快速发展阶段,作为灵敏度极高的测序技术——纳米孔测序,对薄膜电极的电阻率和储能特性提出了更高的要求。为了降低薄膜的电阻率并提高储能特性,本文利用反应磁控溅射方法,基于原位生长原理,分别制备了TiOxNy和Ti/TiN/TiOxNy电极薄膜。采用扫描电子显微镜、X射线衍射仪和电化学工作站对薄膜的微观结构、化学成分及其电化学性能进行研究。结果表明,在TiN高导电性和TiOxNy高比表面积的协同作用下,Ti/TiN/TiOxNy电极薄膜表现出优异的电化学性能。当电流密度为0.15 mA/cm2时获得7.01 mF/cm2的比电容,是TiOxNy电极薄膜比电容值的1.3倍。同时,与TiOxNy单电极相比,Ti/TiN/TiOxNy...  相似文献   

8.
In situ electrochemical activation brings unexpected electrochemical performance improvements to electrode materials, while the mechanism behind is still needed to study deeply. Herein, an in situ electrochemically approach is developed for the activation of heterointerface MnOx/Co3O4 by inducing Mn-defect, wherein the Mn defects are formed through a charge process that converts the MnOx with poor electrochemical activities toward Zn2+ into high electrochemically active cathode for aqueous zinc-ion batteries (ZIBs). Guided by the coupling engineering strategy, the heterointerface cathode exhibits an intercalation/conversion dual-mechanism without structural collapse during storage/release of Zn2+. The heterointerfaces between different phases can generate built-in electric fields, reducing the energy barrier for ion migration and facilitating electron/ion diffusion. As a consequence, the dual-mechanism MnOx/Co3O4 shows an outstanding fast charging performance and maintains a capacity of 401.03 mAh g−1 at 0.1 A g−1. More importantly, a ZIB based on MnOx/Co3O4 delivered an energy density of 166.09 Wh kg−1 at an ultrahigh power density of 694.64 W kg−1, which outperforms those of fast charging supercapacitors. This work provides insights for using defect chemistry to introduce novel properties in active materials for highly for high-performance aqueous ZIBs.  相似文献   

9.
Although there has been tremendous progress in exploring new configurations of zinc‐ion hybrid supercapacitors (Zn‐HSCs) recently, the much lower energy density, especially the much lower areal energy density compared with that of the rechargeable battery, is still the bottleneck, which is impeding their wide applications in wearable devices. Herein, the pre‐intercalation of Zn2+ which gives rise to a highly stable tunnel structure of ZnxMnO2 in nanowire form that are grown on flexible carbon cloth with a disruptively large mass loading of 12 mg cm?2 is reported. More interestingly, the ZnxMnO2 nanowires of tunnel structure enable an ultrahigh areal energy density and power density, when they are employed as the cathode in Zn‐HSCs. The achieved areal capacitance of up to 1745.8 mF cm?2 at 2 mA cm?2, and the remarkable areal energy density of 969.9 µWh cm?2 are comparable favorably with those of Zn‐ion batteries. When integrated into a quasi‐solid‐state device, they also endow outstanding mechanical flexibility. The truly battery‐level Zn‐HSCs are timely in filling up of the battery‐supercapacitor gap, and promise applications in the new generation flexible and wearable devices.  相似文献   

10.
Cr-doped MnO2 nanostructure has been fabricated via a facile hydrothermal method and its morphology and electrochemical properties was discussed systematically. In this process, flower-like MnO2 transforms into the self-assembled orchid structure under the influence of Cr-doped. Moreover, electrochemical behaviors of the Cr-doped MnO2 nanostructure electrode were clarified by cyclic voltammograms, galvanostatic charge/discharge tests and electrochemical impedance spectroscopy, which shows a high specific capacitance of 202.5 F g?1 and superior cycling stability (6.8 % capacitance decay after 1000 cycling test). These remarkable and excellent results prove it has a great potential of application in future energy storage device.  相似文献   

11.
Nanosized rutile TiO2 is one of the most promising candidates for anode material in lithium-ion micro-batteries owing to their smaller dimension in ab-plane resulting in an enhanced performance for area capacity. However, few reports have yet emerged up to date of rutile TiO2 nanorod arrays growing along c-axis for Li-ion battery electrode application. In this study, single-crystalline rutile TiO2 nanorod arrays growing directly on Ti foil substrates have been fabricated using a template-free method. These nanorods can significantly improve the electrochemical performance of rutile TiO2 in Li-ion batteries. The capacity increase is about 10 times in comparison with rutile TiO2 compact layer.  相似文献   

12.
Huang  Liang-ai  He  Zhishun  Guo  Jianfeng  Pei  Shi-en  Shao  Haibo  Wang  Jianming 《Nano Research》2020,13(1):246-254

Highly active, durable and inexpensive oxygen evolution reaction (OER) catalysts are crucial for achieving practical and high-efficiency water splitting. Herein, hierarchical interconnected NixCo1−xOOH nanosheet arrays supported on TiO2/Ti substrate have been fabricated through a facile photodeposition method. Compared with pristine NiOOH, the obtained NixCo1−xOOH nanosheet arrays possess larger exposed electrochemical active surface area, faster transfer and collection of electrons and stronger electronic interaction, showing a low overpotential of 350 mV at a current density of 10 mA·cm−2 and a small Tafel slope of 41 mV·dec−1 in basic solutions, with the OER performance superior to pristine NiOOH and most Ni-based catalysts. Furthermore, the NixCo1−xOOH electrode demonstrates excellent stability at the current density of 10 mA·cm−2 for 24 hours, which is attributed to the structural maintenance caused by the good adhesion of the catalyst and the substrate. Our study provides an alternative approach for the rational design of highly active and promising OER electrocatalysts.

  相似文献   

13.
The fabrication of low-cost, effective, and highly integrated nanostructured materials through simple and reproducible methods for high-energy-density supercapacitors is highly desirable. Herein, an activated carbon cloth (ACC) is designed as the functional scaffold for supercapacitors and treated hydrothermally to deposit NiCo nanoneedles working as internal core, followed by a dip-dry coating of NiOOH nanoflakes core–shell and uniform hydrothermal deposition of CoMoO4 nanosheets serving as an external shell. The structured core–shell heterostructure ACC@NiCo@NiOOH@CoMoO4 electrode resulted in exceptional specific areal capacitance of 2920 mF cm−2 and exceptional cycling stability for 10 000 cycles. Moreover, the fabricated electrode is developed into an asymmetric supercapacitor which demonstrates excellent areal capacitance, energy density, and power density within the broad potential window of 1.7 V with a cycling life of 92.4% after 10 000 charge–discharge cycles, which reflects excellent cycle life. The distinctive core–shell structure, highly conductive substrate, and synergetic effect of coated material results in more electrochemical active sites and flanges for effective electrons and ion transportation. This unique technique provides a new perspective for cost-efficient supercapacitor applications.  相似文献   

14.
In this article, three-dimensional (3D) heterostructured of MnO2/graphene/carbon nanotube (CNT) composites were synthesized by electrochemical deposition (ELD)-electrophoretic deposition (EPD) and subsequently chemical vapour deposition (CVD) methods. MnO2/graphene/CNT composites were directly used as binder-free electrodes to investigate the electrochemical performance. To design a novel electrode material with high specific area and excellent electrochemical property, the Ni foam was chosen as the substrate, which could provide a 3D skeleton extremely enhancing the specific surface area and limiting the huge volume change of the active materials. The experimental results indicated that the specific capacitance of MnO2/graphene/CNT composite was up to 377.1 F g?1 at the scan speed of 200 mV s?1 with a measured energy density of 75.4 Wh kg?1. The 3D hybrid structures also exhibited superior long cycling life with close to 90% specific capacitance retained after 500 cycles.  相似文献   

15.
Among active pseudocapacitive materials, polypyrrole (PPy) is a promising electrode material in electrochemical capacitors. PPy‐based materials research has thus far focused on its electrochemical performance as a positive electrode rather than as a negative electrode for asymmetric supercapacitors (ASCs). Here high‐performance electrochemical supercapacitors are designed with tungsten oxide@PPy (WO3@PPy) core–shell nanowire arrays and Co(OH)2 nanowires grown on carbon fibers. The WO3@PPy core–shell nanowire electrode exhibits a high capacitance (253 mF/cm2) in negative potentials (–1.0–0.0 V). The ASCs packaged with CF‐Co(OH)2 as a positive electrode and CF‐WO3@PPy as a negative electrode display a high volumetric capacitance up to 2.865 F/cm3 based on volume of the device, an energy density of 1.02 mWh/cm3, and very good stability performance. These findings promote the application of PPy‐based nanostructures as advanced negative electrodes for ASCs.  相似文献   

16.
Three-dimensional nanostructured polyaniline (PANI) and manganese oxide (MnO x ) composite porous microspheres were prepared by oxidizing aniline with KMnO4 under interfacial chemical synthesis with 4-amino-thiophenol (4-ATP) as the structure-directing agent on the Au substrate. Surface morphology and chemical composition of PANI/MnO x microsphere were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, thermo gravimetric-differential thermal analysis, and Fourier transform infrared spectrum. The result displayed that concentration of KMnO4 played a key role in forming the 3D nanostructured porous microspheres. To obtain the regular shapes and uniform sizes of the porous microspheres, the optimal concentration of oxidant was 0.15 mol L−1. The electrochemistry performances of PANI/MnO x microsphere were determined by cyclic voltammograms, electrochemical impedance spectroscopy, and galvanostatic charge–discharge. The specific capacitance of the 3D nanostructured PANI–MnO x porous microspheres exhibited a maximum value of 828 F g−1 at current density of 2 mA cm−2 over a potential range of 0.0–0.9 V versus SCE. It has improved 365 and 88 % comparing with that of PANI (178 F g−1) and MnO x (440 F g−1) obtained at the similar condition. The charge–discharge tests showed the PANI/MnO x microsphere possessed a good cycling stability. It maintained about 84.2 % of the initial capacitance after 1000 cycles at a current density of 2.0 mA cm−2.  相似文献   

17.
Core–shell nanostructures of metal oxides and carbon‐based materials have emerged as outstanding electrode materials for supercapacitors and batteries. However, their synthesis requires complex procedures that incur high costs and long processing times. Herein, a new route is proposed for synthesizing triple‐core–shell nanoparticles of TiO2@MnO2@C using structure‐guided combustion waves (SGCWs), which originate from incomplete combustion inside chemical‐fuel‐wrapped nanostructures, and their application in supercapacitor electrodes. SGCWs transform TiO2 to TiO2@C and TiO2@MnO2 to TiO2@MnO2@C via the incompletely combusted carbonaceous fuels under an open‐air atmosphere, in seconds. The synthesized carbon layers act as templates for MnO2 shells in TiO2@C and organic shells of TiO2@MnO2@C. The TiO2@MnO2@C‐based electrodes exhibit a greater specific capacitance (488 F g?1 at 5 mV s?1) and capacitance retention (97.4% after 10 000 cycles at 1.0 V s?1), while the absence of MnO2 and carbon shells reveals a severe degradation in the specific capacitance and capacitance retention. Because the core‐TiO2 nanoparticles and carbon shell prevent the deformation of the inner and outer sides of the MnO2 shell, the nanostructures of the TiO2@MnO2@C are preserved despite the long‐term cycling, giving the superior performance. This SGCW‐driven fabrication enables the scalable synthesis of multiple‐core–shell structures applicable to diverse electrochemical applications.  相似文献   

18.
The ingenious design of a freestanding flexible electrode brings the possibility for power sources in emerging wearable electronic devices. Here, reduced graphene oxide (rGO) wraps carbon nanotubes (CNTs) and rGO tightly surrounded by MnO2 nanosheets, forming a 3D multilevel porous conductive structure via vacuum freeze‐drying. The sandwich‐like architecture possesses multiple functions as a flexible anode for lithium‐ion batteries. Micrometer‐sized pores among the continuously waved rGO layers could extraordinarily improve ion diffusion. Nano‐sized pores among the MnO2 nanosheets and CNT/rGO@MnO2 particles could provide vast accessible active sites and alleviate volume change. The tight connection between MnO2 and carbon skeleton could facilitate electron transportation and enhance structural stability. Due to the special structure, the rGO‐wrapped CNT/rGO@MnO2 porous film as an anode shows a high capacity, excellent rate performance, and superior cycling stability (1344.2 mAh g−1 over 630 cycles at 2 A g−1, 608.5 mAh g−1 over 1000 cycles at 7.5 A g−1). Furthermore, the evolutions of microstructure and chemical valence occurring inside the electrode after cycling are investigated to illuminate the structural superiority for energy storage. The excellent electrochemical performance of this freestanding flexible electrode makes it an attractive candidate for practical application in flexible energy storage.  相似文献   

19.
A stable MnOx@C@MnOx core–shell heterostructure consisting of vertical MnOx nanosheets grown evenly on the surface of the MnOx@carbon nanowires are obtained by simple liquid phase method combined with thermal treatment. The hierarchical MnOx@C@MnOx heterostructure electrode possesses a high specific capacitance of 350 F g?1 and an excellent cycle performance owing to the existence of the pore structure among the ultrasmall MnOx nanoparticles and the rapid transmission of electrons between the active material and carbon coating layer. Particularly, according to the in situ Raman spectra analysis, no characteristic peaks corresponding to MnOOH are found during charging/discharging, indicating that pseudocapacitive behavior of the MnOx electrode have no relevance to the intercalation/deintercalation of protons (H+) in the electrolyte. Further combining in situ X‐ray powder diffraction analysis, the diffraction peak of α‐MnO2 can be detected in the process of charging, while Mn3O4 phase is found in discharge products. Therefore, these results demonstrate that the MnOx undergoes a reversible phase transformation reaction of Mn3O4?α‐MnO2. Moreover, the assembled all‐solid‐state asymmetric supercapacitor with a MnOx@C@MnOx electrode delivers a high energy density of 23 Wh kg?1, an acceptable power density of 2500 W kg?1, and an excellent cyclic stability performance of 94% after 2000 cycles, showing the potential for practical application.  相似文献   

20.
Fiber‐shaped supercapacitors with improved specific capacitance and high rate capability are a promising candidate as power supply for smart textiles. However, the synergistic interaction between conductive filaments and active nanomaterials remains a crucial challenge, especially when hydrothermal or electrochemical deposition is used to produce a core (fiber)–shell (active materials) fibrous structure. On the other hand, although 2D pseudocapacitive materials, e.g., Ti3C2T x (MXene), have demonstrated high volumetric capacitance, high electrical conductivity, and hydrophilic characteristics, MXene‐based electrodes normally suffer from poor rate capability owing to the sheet restacking especially when the loading level is high and solid‐state gel is used as electrolyte. Herein, by hosting MXene nanosheets (Ti3C2T x ) in the corridor of a scrolled carbon nanotube (CNT) scaffold, a MXene/CNT fiber with helical structure is successfully fabricated. These features offer open spaces for rapid ion diffusion and guarantee fast electron transport. The solid‐state supercapacitor based on such hybrid fibers with gel electrolyte coating exhibits a volumetric capacitance of 22.7 F cm−3 at 0.1 A cm−3 with capacitance retention of 84% at current density of 1.0 A cm−3 (19.1 F cm−3), improved volumetric energy density of 2.55 mWh cm−3 at the power density of 45.9 mW cm−3, and excellent mechanical robustness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号