首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A CMOS nested-chopper instrumentation amplifier with 100-nV offset   总被引:2,自引:0,他引:2  
A CMOS nested-chopper instrumentation amplifier is presented with a typical offset of 100 nV. This performance is obtained by nesting an additional low-frequency chopper pair around a conventional chopper amplifier. The inner chopper pair removes the 1/f noise, while the outer chopper pair reduces the residual offset. The test chip is free from 1/f noise and has a thermal noise of 27 nV/√Hz consuming a total supply current of 200 μA  相似文献   

2.
A fully integrated 0.5-5.5-GHz CMOS-distributed amplifier is presented. The amplifier is a four stage design fabricated in a standard 0.6-μm three-layer metal digital-CMOS process. The amplifier has a unity-gain cutoff frequency of 5.5 GHz, and a gain of 6.5 dB, with a gain flatness of ±1.2 dB over the 0.5-4 GHz band. Input and output are matched to 50 Ω, with worst-case return losses on the input and output of -7 and -10 dB, respectively. Power dissipation is 83.4 mW from a 3.0 V supply, input-referred 1-dB compression point varies from +6 dBm at 1 GHz to 8.8 dBm at 5 GHz. From a circuit standpoint, the fully integrated nature of the amplifier on the given substrate results in a heavily parasitic-laden design. Discussion emphasis is therefore placed on the practical design, modeling, and CAD optimization techniques used in the design process  相似文献   

3.
A fully integrated CMOS differential power amplifier driver(PAD) is proposed for WiMAX applications. In order to fulfill the differential application requirements,a transmission line transformer is used as the output matching network.A differential inductance constitutes an inter-stage matching network.Meanwhile,an on chip balun realizes input matching as well as single-end to differential conversion.The PAD is fabricated in a 0.13μm RFCMOS process.The chip size is 1.1×1.1 mm~2 with all of the matching network integrated on chip. The saturated power is around 10 dBm and power gain is about 12 dB.  相似文献   

4.
Chen  D.D. Yeo  K.S. Do  M.A. Boon  C.C. 《Electronics letters》2007,43(20):1084-1085
A fully integrated CMOS limiting amplifier (LA) is presented. Its novel implementation of the offset compensation circuit completely removes bulky off-chip RC components. The LA is designed using a 0.18 mum CMOS technology and it obtains a 40 dB gain with a bandwidth of 1.8 GHz. The total power consumption is only 18.39 mW under a 1.8 V voltage supply.  相似文献   

5.
An integrated readout amplifier for instrumentation applications in smart sensor systems is presented. A fully integrated CMOS version of such an amplifier has been developed using switched-capacitor techniques. The amplifier system provides differential input capability, programmable amplification, clock generation, and low-pass filtering on the chip. The output signal is continuous in time and the system can be used without any of the special precautions necessary for sampled-data circuits. Emphasis was put on high PSRR (-63 dB at DC), low noise (10-μVrms input equivalent wideband noise) and offset, low harmonic distortion, and small amplification error (<0.06% at 4 Vpp). To cover a large field of applications, only slightly different realizations can be used for capacitive sensors as well as for resistive sensor bridges  相似文献   

6.
A fully integrated 5-GHz low-power ESD-protected low-noise amplifier (LNA), designed and fabricated in a 90-nm RF CMOS technology, is presented. This 9.7-mW LNA features a 13.3-dB power gain at 5.5 GHz with a noise figure of 2.9 dB, while maintaining an input return loss of -14 dB. An on-chip inductor, added as "plug-and-play," i.e., without altering the original LNA design, is used as ESD protection for the RF pins to achieve sufficient ESD protection. The LNA has an ESD protection level up to 1.4 A transmission line pulse (TLP) current, corresponding to 2-kV Human Body Model (HBM) stress. Experimental results show that only minor RF performance degradation is observed by adding the inductor as a bi-directional ESD protection device to the reference LNA.  相似文献   

7.
本文使用了模拟预失真技术设计了用于2.5 GHz的m-WiMAX发射机系统的基于转换器的CMOS功率放大器,功率级和驱动级的三次谐波可以在特定功率范围内相互抵消。使用标准0.18μmCMOS工艺设计的两级功放在1 dB压缩点处的功率为27.5 dBm,功率增加效率为27%。在20.5 dBm的平均功率下可以满足功率谱的要求,EVM为5.5%。测试结果表明,与传统的使用三阶跨导零点偏置技术设计的功放相比,该功放具有良好的线性度和效率。  相似文献   

8.
A transformer-based CMOS power amplifier(PA) is linearized using an analog predistortion technique for a 2.5-GHz m-WiMAX transmitter.The third harmonic of the power stage and driver stage can be cancelled out in a specific power region.The two-stage PA fabricated in a standard 0.18μm CMOS process delivers 27.5 dBm with 27%PAE at the 1-dB compression point(P1dB) and offers 21 dB gain.The PA achieves 5.5%EVM and meets the spectrum mask at 20.5 dBm average power.Another conventional PA with a zero-cross-point of gm3 bias is also fabricated and compared to prove its good linearity and efficiency.  相似文献   

9.
A fully integrated 24-dBm complementary metal oxide semiconductor (CMOS) power amplifier (PA) for 5-GHz WLAN applications is implemented using 0.18-/spl mu/m CMOS foundry process. It consists of differential three-stage amplifiers and fully integrated input/output matching circuits. The amplifier shows a P/sub 1/ of 21.8 dBm, power added efficiency of 13%, and gain of 21 dB, respectively. The saturated output power is above 24.1 dBm. This shows the highest output power among the reported 5-GHz CMOS PAs as well as completely satisfying IEEE 802.11a transmitter back off requirement.  相似文献   

10.
A low-noise CMOS instrumentation amplifier for low-frequency thermoelectric infrared sensor applications is described which uses a chopper technique to reduce low-frequency noise and offset. The offset reduction efficiency of the band-pass filter, implemented to reduce residual offset due to clock feedthrough, has been analyzed and experimentally verified. The circuit has been integrated in a transistor-only 1-μm single-poly n-well CMOS process. It features a gain of 52 dB with a 500 Hz bandwidth and a common-mode rejection ratio (CMRR) of more than 70 dB. The equivalent input low frequency noise is 15 nV/√Hz. The typical residual input offset is 1.5 μV. The amplifier power consumption is 1.3 mW  相似文献   

11.
本文给出了一个低功耗、全集成的CMOS脉冲式超宽带发射机电路的设计和流片测试结果,其集成了亚纳秒脉冲发生器、脉冲位置调制(PPM)器和天线驱动电路等,可支持多种调制方式并产生最高达1Gp/s的超宽带脉冲序列.设计采用数字驱动信号上升沿触发的新型反馈结构脉冲发生器,可产生稳定的脉冲信号.通过可调的脉冲宽度和PPM调制步长,设计提供了工艺参数和温度变化的补偿手段.  相似文献   

12.
A fully integrated MOSFET amplifier with very low drift has been built using standard technology. Input offset voltages as low as 5 /spl mu/V and drift values of this offset voltage less than 0.05 /spl mu/V//spl deg/C are measured.  相似文献   

13.
In this paper, we present the design of a fully integrated CMOS low noise amplifier (LNA) with on-chip spiral inductors in 0.18 μm CMOS technology for 2.4 GHz frequency range. Using cascode configuration, lower power consumption with higher voltage and power gain are achieved. In this configuration, we managed to have a good trade off among low noise, high gain, and stability. Using common-gate (CG) configuration, we reduced the parasitic effects of Cgd and therefore alleviated the stability and linearity of the amplifier. This configuration provides more reverse isolation that is also important in LNA design. The LNA presented here offers a good noise performance. Complete simulation analysis of the circuit results in center frequency of 2.4 GHz, with 37.6 dB voltage gain, 2.3 dB noise figure (NF), 50 Ω input impedance, 450 MHz 3 dB power bandwidth, 11.2 dB power gain (S21), high reverse isolation (S12)<−60 dB, while dissipating 2.7 mW at 1.8 V power supply.  相似文献   

14.
A fully integrated CMOS DCS-1800 frequency synthesizer   总被引:2,自引:0,他引:2  
A prototype frequency synthesizer for the DCS-1800 system has been integrated in a standard 0.4 μm CMOS process without any external components. A completely monolithic design has been made feasible by using an optimized hollow-coil inductor low-phase-noise voltage-controlled oscillator (VCO). The frequency divider is an eight-modulus phase-switching prescaler that achieves the same speed as asynchronous dividers. The die area was minimized by using a dual-path active loop filter. An indirect linearization technique was implemented for the VCO gain. The resulting architecture is a fourth-order, type-2 charge-pump phase-locked loop. The measured settling time is 300 μs, and the phase noise is up to -123 dBc/Hz at 600 kHz and -138 dBc/Hz at 3 MHz offset  相似文献   

15.
16.
A 0.6-V subthreshold-leakage suppressed fully differential CMOS switched-capacitor amplifier using Analog T-switch scheme in a standard 0.18 μm CMOS technology is presented. The circuit design of major building blocks is described. The performance of this circuit is demonstrated by experimental results. The experimental results confirm the capability of Analog T-switch scheme to fulfill circuit requirements.  相似文献   

17.
A 0.5-8.5 GHz fully differential CMOS distributed amplifier   总被引:1,自引:0,他引:1  
A fully integrated fully differential distributed amplifier with 5.5 dB pass-band gain and 8.5 GHz unity-gain bandwidth is described. The fully differential CMOS circuit topology yields wider bandwidth than its single-ended counterpart, by eliminating the source degeneration effects of parasitic interconnect, bond wire, and package inductors. A simulated annealing CAD tool underpins the parasitic-aware methodology used to optimize the design including all on-chip active and passive device and off-chip package parasitics. Mixed-mode S-parameter measurement techniques used for fully differential circuit testing are reviewed. Integrated in 1.3/spl times/2.2 mm/sup 2/ in a standard 0.6 /spl mu/m CMOS process, the distributed amplifier dissipates 216 mW from a single 3 V supply.  相似文献   

18.
A 24-GHz +14.5-dBm fully integrated power amplifier with on-chip 50-/spl Omega/ input and output matching is demonstrated in 0.18-/spl mu/m CMOS. The use of substrate-shielded coplanar waveguide structures for matching networks results in low passive loss and small die size. Simple circuit techniques based on stability criteria derived result in an unconditionally stable amplifier. The power amplifier achieves a power gain of 7 dB and a maximum single-ended output power of +14.5-dBm with a 3-dB bandwidth of 3.1 GHz, while drawing 100 mA from a 2.8-V supply. The chip area is 1.26 mm/sup 2/.  相似文献   

19.
Cell-based fully integrated CMOS frequency synthesizers   总被引:1,自引:0,他引:1  
A family of standard cells for phase-locked loop (PLL) applications is presented. The applications are processed using a 1.5 μm, n-well, double-polysilicon, double-layer metal CMOS process. Applications include frequency synthesis for computer clock generation, disk drives, and pixel clock generators for computer monitors, with maximum frequencies up to 80 MHz. The synthesizers require no external components since the loop filter and oscillator are on chip with the phase frequency detector and the charge pump. Special voltage and current reference cells are discussed. Analysis of noise sources in the PLL demonstrates the need for reducing the phase noise of the system. A low phase noise is achieved through supply rejection techniques and by placing the oscillator in a high-gain feedback loop to minimize its noise contributions. Laboratory measurements of completed silicon show synthesizers with exceptionally linear gain, as well as transient responses and phase noise similar to predicted results  相似文献   

20.
In this paper, a fully integrated 30-dBm UHF band differential power amplifier (PA) with transformer-type combiner is designed and fabricated in a 0.18-μm CMOS technology. For the high power PA design, proposed transformer network and the number of power cells is fully analyzed and optimized to find inductors dimensions. In order to improve both the linear operating range and the power efficiency simultaneously, a parallel combination of the class AB and the class C amplifier in power cells was employed. The PA delivers an output power of 29 dBm and a power-added efficiency of 24% with a power gain of 20 dB, including the losses of the bond-wires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号