首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
磷化镍具有Ni3P、Ni12P5、Ni2P、Ni5P4等多种晶相,深入研究各个晶相的制备规律和稳定存在条件对开发磷化镍基催化材料至关重要。本文系统考察了磷化时间、磷化温度、Ni/P摩尔比、磷化气速和磷源种类对制备晶相的影响。结果发现,以Ni3P为前体、红磷为磷源时,可以得到Ni5P4、Ni2P、Ni12P5三种晶相;以次磷酸盐为磷源时只能得到Ni2P和Ni12P5晶相。当以红磷为磷源时,反应温度是影响晶相的主要因素,磷化温度为500℃、600℃和800℃时分别得到Ni5P4、Ni2P和Ni12P5晶相。将制备的Ni3P、Ni2P、Ni12P5和Ni5P4作为助剂,与CdS复合制备光催化复合材料,得到的4种Ni x P y /CdS复合材料均表现出良好的光解水制氢性能,Ni5P4/CdS表现出最优的产氢能力,为CdS的5.4倍。表征结果证明,引入Ni x P y 能够有效抑制反应过程中CdS的载流子复合,提升其光解水反应活性。  相似文献   

2.
通过一步电化学沉积法在泡沫镍(Ni foam,NF)集流体上制备了3D硫化镍(Ni3S2)材料,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、拉曼光谱(Raman)、X射线光电子能谱(XPS)等对所制备材料的物化结构和形貌进行了表征,并采用循环伏安法(CV)、恒流充放电法(GCD)研究了其作为超级电容器电极的电化学性能。测试结果表明,制备的Ni3S2/NF-10材料具有相互连接的3D结构,表现出优异的赝电容性能。在1 A/g电流密度下,比电容高达2850 F/g。将电流密度提高到10 A/g,该材料比电容仍能达到1972 F/g,说明其具有优异的倍率性能。测试结果表明所制备的Ni3S2材料有望应用于电化学储能领域。  相似文献   

3.
采用溶胶-凝胶法制备了TiO2-Al2O3复合载体, 以柠檬酸(CA)为络合剂采用浸渍法制备了Ni2P负载的TiO2-Al2O3复合载体催化剂, 并用 X 射线衍射(XRD)、N2吸附比表面积(BET)测定技术对催化剂的结构和性质进行了表征, 考察了载体焙烧温度、催化剂焙烧温度、还原温度、还原压力对其进行的二苯并噻吩(DBT)加氢脱硫(HDS)性能的影响。结果表明, 升高载体焙烧温度有利于催化剂表面上活性物种的分散, 但焙烧温度过高会导致催化剂烧结, 适宜的载体焙烧温度为550℃。当还原温度为500~550℃时, 磷化镍主要以Ni12P5相形式存在, 且随着还原温度的升高, Ni12P5的衍射峰强度逐渐增强, 还原温度为700℃时, 可得到单一的Ni2P物相。载体焙烧温度为550℃, 催化剂焙烧温度为500℃, 还原温度为700℃, 常压还原制备的Ni2P/TiO2-Al2O3催化剂具有最好的活性。在360℃、3.0MPa、氢油体积比500、液时体积空速2.0h-1的条件下, 反应4h时, DBT转化率为99.5 %。  相似文献   

4.
以SiO2为载体,结合浸渍法和程序升温还原法制备磷化镍催化剂,考察了不同n(Ni)/n(P)和不同Ni负载量等对催化剂的结构及异丁烷脱氢性能的影响。运用透射电镜(TEM),X射线衍射(XRD),程序升温还原(H2-TPR),氢气程序升温脱附(H2-TPD)等表征手段考察催化剂的组成与结构、还原性能及氢吸附性能。研究结果表明:Ni/P比对催化剂表面的物相有较大影响,n(Ni)/n(P)为1.0和0.5时,形成Ni2P相;n(Ni)/n(P)为1.5时,形成Ni12P5。随着Ni负载量的增加,活性组分Ni2P粒子尺寸变大,但分散度降低。磷化镍能够催化异丁烷脱氢制异丁烯,但Ni2P的催化活性要比Ni12P5高,经实验研究发现,当Ni/P比为1.0、负载量为10%、n(H2)/n(i-C4H10)=1.0、空速为800 h-1时,在460 ℃反应时,对异丁烯的选择性可达到80%。  相似文献   

5.
超级电容器是近年来电化学储能器件研发的热点之一,其电极材料对其性能起决定性作用。为了合成具有优异超电容性能的NiCo基二维层状双氢氧化物(LDH)电极材料,首先通过一步水热法在泡沫镍网表面制备NiCo-LDH纳米阵列;然后在水-乙二醇体系下,通过二次溶剂热反应,制备偏钒酸根掺杂的NiCo-LDH纳米阵列;最后,通过碱转化得到性能优异的电极材料。用此电极与活性碳组装成全固态不对称超级电容器件,在电压为0~1.8 V、功率密度为9 mW/cm2时,器件的能量密度达0.416 mW·h/cm2,且具有良好的循环稳定性。  相似文献   

6.
采用浸渍法及热分解法合成了不同负载量的Ni2P/ZrO2催化剂,通过XRD、TEM和氮气吸脱附等多种手段表征其物理化学性质,并通过对苯酚的加氢处理来研究载体对Ni2P活性的影响。结果表明:Ni2P分散负载在ZrO2的表面,ZrO2载体降低了Ni2P的粒径,有效防止了Ni2P的聚集,显著提高了Ni2P对苯酚加氢脱氧的活性。在相同催化条件下,10%-Ni2P/ZrO2呈现出最佳催化活性。以10%-Ni2P/ZrO2为代表考察催化反应最优条件,在反应温度300℃、初始氢气压5MPa下反应2h,苯酚转化率达到90.8%,环己烷选择性达到91.7%。  相似文献   

7.
纳米α-MnO2/活性炭混合超级电容器的性能   总被引:1,自引:0,他引:1  
研究了以纳米α-MnO2和活性炭(AC)为电极材料的超级电容器,分别对纳米α-MnO2的制备、电解液浓度的影响进行了研究,组装了MnO2/KOH/MnO2、AC/KOH/AC、MnO2/KOH/AC三种类型的模拟电容器,用循环伏安、恒流充放电、自放电以及时间常数法对电极和电容器进行性能测试,发现当电解液KOH浓度为7 mol•L-1时,混合超级电容器性能最佳,α-MnO2单电极比电容可达237 F•g-1,混合电容器工作电压高达1.5 V,并且具有良好的大电流放电性能和较好的循环寿命,实验还表明混合超级电容器具有极低的自放电率.  相似文献   

8.
李明伟  杨绍斌 《化工进展》2021,40(3):1545-1550
采用水热法制备了NiMn2O4/还原氧化石墨烯(NiMn2O4/rGO)复合电极材料,研究了石墨烯对NiMn2O4/rGO材料形貌、微观结构及电化学性能的影响。结果表明:NiMn2O4纳米片沉积在石墨烯片的表面,聚集现象消失。与纯NiMn2O4相比,NiMn2O4/rGO具有高的比表面积和优良的电化学性能。在1A/g时具有1375F/g的比电容,而纯NiMn2O4的比电容为924F/g。5000次充放电后,NiMn2O4/rGO在5A/g时的比电容保留率为90%,而NiMn2O4的比电容保留率为78%。NiMn2O4/rGO表现出良好的电容性能,作为超级电容器电极材料具有广泛的应用前景。  相似文献   

9.
MnO2基超级电容器电极材料   总被引:7,自引:2,他引:5       下载免费PDF全文
万厚钊  缪灵  徐葵  亓同  江建军 《化工学报》2013,64(3):801-813
超级电容器作为一种新型的储能装置,具有长寿命、高功率等特点,在诸多领域内有广泛的应用前景。在影响超级电容器性能的所有因素中,电极材料的性能起着决定性的作用。二氧化锰(MnO2)具有原料易得,价格低廉,来源广泛,环境友好等优点。综述了MnO2超级电容器电极材料的储能机理,纳米MnO2的微观结构与电化学特性之间的关系,并从纳米MnO2的制备及其综合改性角度,综述其合成、掺杂改性、复合方法在MnO2基电极材料的新进展,指出了MnO2基超级电容器电极材料的主要研究方向。  相似文献   

10.
超级电容器作为一种新型储能器件,凭借其高功率密度和超长的使用寿命等优点,已被实际应用于多个领域。在超级电容器组成部件中,电极材料对器件性能优劣起着关键作用,因此制备电化学性能优异的电极材料具有重要意义。采用乙酸镍、乙酸钴为原料,还原型谷胱甘肽(GSH)为形貌控制剂和硫源,通过水热法制备Ni Co2S4电极材料,并研究了水热反应时间对Ni Co2S4微观结构、形貌、电化学性能的影响。结果表明:在GSH作用下制备的Ni Co2S4材料呈现“蛋黄–蛋壳”结构;当电流密度为0.5 A/g时,比电容为1 552.7 F/g;在电流密度为10 A/g条件下可以保持61.3%的比电容;经过2 000次循环后,Ni Co2S4电极材料的比电容保持率可以维持在79.3%。分别以Ni Co2S4与活性炭为正负极组装一个混合型超级电容器,在功率密度为800 W/kg时可以提供33.9 W·h...  相似文献   

11.
苑丹丹  张永江  李锋  宋华 《化工进展》2015,34(7):1882-1886
采用溶胶-凝胶法制备了TiO2-Al2O3复合载体, 以柠檬酸为络合剂, 浸渍法制备了负载型Ni2P/TiO2-Al2O3催化剂前体, 程序升温H2还原法制备了Ni2P/TiO2-Al2O3催化剂, 并用 X 射线衍射(XRD)、N2吸附比表面积(BET)测定技术对催化剂的结构和性质进行了表征, 考察了浸渍方法、Ni/P摩尔比、Ni2P负载量对其进行的二苯并噻吩(DBT)加氢脱硫(HDS)性能的影响。结果表明, 当Ni/P比低于1:1时, 能得到单一的Ni2P物相;当Ni/P比为2:1时, 开始出现Ni3P物相。采用Ni/P比为1:1、Ni2P负载量为30%、采用共浸渍方法制备的Ni2P/TiO2-Al2O3催化剂具有最好的活性, 在360℃、3.0MPa、氢油比500 (体积比)、液时体积空速2.0h-1的条件下反应4h时, 二苯并噻吩转化率为99.5%。  相似文献   

12.
采用“水热—光沉积—气相磷化”法在泡沫镍(NF)上成功合成了Ru、Fe共掺杂Co2P花簇(Ru,Fe-Co2P/NF)。该催化剂具有优异的OER性能,在0.331 V的过电位下即可获得1 A/cm2的电流密度,比基准RuO2-NF催化剂所需电压低40.5%,因此,Ru,Fe-Co2P/NF具有良好的工业应用前景。实验结果说明利用光沉积技术进行Ru的掺杂,很好地提高了Fe掺杂Co2P的OER性能,为贵金属与过渡金属催化剂的结合提供了一种新手段。  相似文献   

13.
为满足超级电容器对于高性能电极材料的需求,本研究采用水热和电沉积结合的方法,在泡沫镍上合成了具有独特三维(3D)核壳结构的纳米针/纳米片核壳阵列(3D NDNSA)的过渡金属氧化物和硫化物复合赝电容电极材料Mn-Ni-Co-O@Ni-Mn-S(MNCO@NMS)。SEM和TEM分析结果表明,一维MNCO纳米针为核心和二维NMS纳米片为壳层,相互连接并交织形成分层的3D核壳纳米结构的MNCO@NMS。由于过渡金属氧化物和硫化物的协同作用和分层核壳结构带来的导电性和活性位点的增加,制得的3D MNCO@NMS表现出了优异的电化学性能。在3 mol·L-1 KOH作为电解质的三电极电化学测试系统中,MNCO@NMS电极在电流密度1 A·g-1下比电容为 2 574.2 F·g-1;在电流密度 10 A·g-1下循环5 000次后,表现出接近100%的库伦效率和83.4%的比电容保持率。此外,以制得的MNCO@NMS为正极,活性炭为负极组装的混合超级电容器器件(HSCs)在功率密度799 W·kg-1下的能量密度为54.4 Wh·kg-1,在 5 A·g-1下进行4 000次循环后,库伦效率接近100%和保持初始比电容的81.7%。这些电化学特性表明,核壳MNCO@NMS可以成为超级电容器高性能电极的选择之一。  相似文献   

14.
为提升超级电容器电极材料的电化学性能,在泡沫镍(NF)上以MOF为模板制备出NiCoP/C导电骨架,后将超薄NiMn-LDH纳米片沉积其上,制备得到核壳结构的NiCoP/C@NiMn-LDH复合材料。电化学测试结果表明,MOF模板的高比表面积、独特的核壳结构和NiCoP/C与NiMn-LDH之间的协同作用有利于电极材料性能的提升。制备得到的NiCoP/C@NiMn-LDH电极在1 A·g-1下比电容可达2 278.0 F·g-1;循环2 000圈后电容保留率为93.7%。  相似文献   

15.
为得到高储能特性的超级电容器电极材料,以价格低廉的生物质——海带为碳源、三聚氰胺为氮源,通过聚合-NaOH活化法合成出纳米级氮掺杂多孔石墨化碳材料(NPGC)。通过XRD、BET、Raman和XPS测试手段对其进行了表征,结果显示:片层结构的NPGC具有大的比表面积(1771 m~2/g)、高的氮含量[x(N)=6.27%]和良好的石墨化强度(I_D/I_G=2.84)并对材料进行了循环伏安、恒电流充放电和交流阻抗性能测试,结果表明:在电流密度为1A/g时,NPGC比电容高达267F/g,5000次恒流充放电循环后,其比电容仍为初始比电容的99.9%,具有优异的储能特性。  相似文献   

16.
作为一种高性能新型储能器件,超级电容器具有功率密度高、充电时间短、绿色环保等诸多优点,决定超级电容器性能的关键因素是电极材料的性能。以煤为原料,通过高温热处理、化学氧化及等离子体还原技术制备得到煤基石墨烯;进一步将煤基石墨烯与聚丙烯腈(PAN)通过静电纺丝技术复合制备得到煤基石墨烯/炭纳米纤维(PM-CG)复合材料,以期借助于石墨烯所具备的高导电性、电子迁移率等性能获得具有优良电化学性能的电极材料。采用物理吸附仪、扫描电镜以及透射电镜等仪器对所制备的炭纳米纤维进行了表征,并通过电化学工作站研究了其作为超级电容器电极材料的电化学性能。结果表明,煤基石墨烯成功掺杂到炭纳米纤维中,所制备的PM-CG复合材料在6 mol/L KOH电解液中的比电容值可达225.1 F·g~(-1),是同样条件下纯PAN炭纳米纤维比电容值的2.57倍。  相似文献   

17.
白明华  李一迪  刘锐  于洲  赵震 《化工进展》2020,39(10):4111-4118
利用简单的水热法制备出不同反应液浓度、不同反应时间以及不同反应温度氧化钴/泡沫镍(CoO/NF)电极,旨在改善氧化钴材料的比电容及稳定性。通过XRD、SEM、TEM、EDS Mapping和BET对其结构和形貌进行了表征,同时在1mol/L氢氧化钾(KOH)电解液中采用循环伏安曲线(CV)、充放电曲线(CP)、循环性能测试、大电流充放电测试以及交流阻抗(EIS)测试研究了其电化学性能。表征结果显示氧化钴均匀地分布在泡沫镍载体表面,且片状结构CoO-8h/NF具有较大的比表面积和多孔特性。在三电极体系中,电化学测试结果显示CoO-8h/NF在1mA/cm2电流密度下表现出最好的电容性能,比电容可以达到930mF/cm2。在10mA/cm2电流密度下对CoO-8h/NF电极进行10000次恒电流充放电测试,循环测试后电极的比电容几乎没有衰减,具有较好的稳定性,是超级电容器比较理想的正极材料。  相似文献   

18.
电极材料是决定超级电容器性能的关键因素。钴酸镍纳米材料因其合成简单,价格低廉,储量丰富且理论比电容较高等优点,成为超级电容器电极材料的研究热点。但钴酸镍纳米材料导电率较低、比表面积较小且电化学稳定性较差等缺点严重影响了其实际应用。本文简单介绍了钴酸镍纳米材料的晶体结构以及其作为超级电容器电极材料时的储能机理,同时结合一些示例归纳总结了钴酸镍基纳米材料的制备方法以及钴酸镍纳米材料的改性研究现状,包括形貌改性、复合改性及引入缺陷。最后指出,钴酸镍基纳米材料的环保且高效的制备方法,通过掺杂或缺陷等方法改善其电化学性能,增大其工作电压窗口以及探索适用于钴酸镍基超级电容器工作的电解液,将是未来研究的重点。  相似文献   

19.
任杰  胡望伟  袁海宽  慎炼 《化工学报》2017,68(8):3082-3088
通过等体积浸渍和N2气流中热处理过程制备了系列氧化硅负载过渡金属磷化物催化剂,经乙酸加氢制乙醇反应实验和动力学分析评价催化剂性能。研究结果表明,随着反应温度从280℃升高到340℃,乙酸转化率和乙醇选择性均逐渐提高。随着催化剂制备的P/Ni摩尔比从2:1增大到4:1,催化剂活性和乙醇选择性均先增大后减小,P/Ni摩尔比为3:1催化剂性能较佳。250℃热处理制备催化剂的催化性能优于200℃及300℃。Ni2P/SiO2催化剂活性和乙醇选择性均高于Co2P/SiO2催化剂。用次磷酸钠作为磷补充源制备催化剂的性能优于次磷酸钾。采用较佳条件下制备的Ni2P/SiO2催化剂,在温度340℃、压力2.0 MPa、氢酸进料量比10:1、质量空速0.4 h-1条件下进行乙酸加氢反应,乙酸转化率为100%,乙醇选择性达到74.56%,并且适当升高反应温度会进一步提高乙醇选择性。  相似文献   

20.
提供一种新型的超级电容器用高电容氮硫共掺杂多孔炭纳米片的制备方法,该方法操作简单、时间周期短、重复性好。以葡萄糖酸钙为碳源、氢氧化钾为活化剂、硫脲为氮硫源,通过直接碳化法制备出氮硫共掺杂多孔炭纳米片,并用于超级电容器的电极材料。通过扫描电子显微镜、X射线光电子能谱仪、X射线衍射仪、拉曼以及氮气吸脱附测试分析,氮硫共掺杂多孔炭纳米片具有高比表面积(491 m2·g-1)、高氮掺杂量(8.1%)、高硫掺杂量(3.7%)以及分级孔道结构,并在6 mol·L-1的KOH水溶液中表现出良好的电化学性能。当电流密度为0.2 A·g-1时,其质量比电容高至221 F·g-1,在20 A·g-1时,其质量比电容可以达到144 F·g-1,质量比电容保持率高达65%,而且经过5 000次充放电循环的电容保持率高达100%。该方法制备出的氮硫共掺杂多孔炭纳米片不仅表现出较大实际应用潜力,而且为寻找电化学性能优异的氮硫共掺杂电极材料奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号