首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为资源化利用工业固废,降低储热系统成本,选取电石渣和钢渣1∶1混合进行CO2捕集和封存,将封存CO2的电石渣-钢渣混合材料作为骨架材料制备7种不同配比的NaNO3/固碳电石渣-钢渣复合相变储热材料。通过热重分析法探究电石渣-钢渣混合材料的固碳性能,利用差示扫描量热法、高温热冲击法、X射线衍射法、电子显微法表征其储热性能、热循环稳定性、化学相容性和微观结构。结果表明,电石渣-钢渣混合材料的固碳率为24.48%;最佳热性能样品CC-SC4中NaNO3、电石渣和钢渣的质量比为2∶1∶1,100~400℃工作温度内储热密度达到444.2 J/g,热导率为1.057 W/(m·K),各组分间具有良好的化学相容性;样品CC-SC4经历1440次加热/冷却循环后仍具有优异的储热性能。  相似文献   

2.
本文研究了基于高温复合相变材料的相变储热电暖器,对其储热性能、内部流场和温度分布及温度调控机制进行了实验和模拟研究,并与镁砖显热电暖器的储热性能进行对比。结果表明这类相变储热电暖器的储热平均温度高、平均温差小、出风口温度高,整体性能要优于镁砖显热电暖器。相同体积下两种电暖器储热量相当,但相变储热电暖器的重量可减轻1.6倍;在相同储热时间和储热温度下,同等重量的相变储热电暖器较镁砖电暖器可多储热68%。结果也展示了这类储热电暖器温度控制测点选择的重要性,当选取距离加热单元10 mm处的测点作为温度调控点时,电暖器内的平均温度和储热砖体的最高温度均能满足安全要求,而且加热单元电源在谷电8 h储热过程中只需启停两次。  相似文献   

3.
相变储热技术与聚光太阳能发电技术相结合可以提高太阳能的利用率,减缓化石燃料燃烧带来的环境压力。本文通过分析相变储热材料的选择标准,对筛选出具有研究价值的含碳二元系相变储热材料的性能特别是热物理性能进行分析。研究发现,硅、硼、铝、铬、铁单质材料与碳元素形成的二元化合物或固溶体具有较高的熔点,形成的含碳二元系相变储热材料在高温相变储热领域应用前景广阔。在含碳二元系相变储热材料中,Fe-C二元合金可满足高温相变储热系统1100~1500℃的相变储热要求,当合金为含碳4.3%的Fe-C共晶成分时,Fe-C二元合金的相变潜热理论值为611 kJ/kg,热导率约为(40±16)W/(m·K),相变温度为1148℃,具有相对其他合金成分更为优异的综合储热性能可用于聚光太阳能热发电系统储热。  相似文献   

4.
面向工业领域蒸汽供热需求,大力发展高温相变储热技术,有效调节电网峰谷负荷,有力促进电能替代,助力实现“碳达峰、碳中和”目标。本文通过对近期相关文献的回顾,首先介绍了相变材料优选原则与方法,其次介绍了高温相变材料的分类,着重阐述了盐基高温复合相变材料的最新研究动态,包括金属泡沫/无机盐、石墨泡沫/无机盐、膨胀石墨/无机盐、多孔陶瓷/无机盐复合相变材料和黏土矿物/无机盐相变复合材料,指出高温复合相变材料可以改善无机盐低热导率和热稳定性、腐蚀密封材料等问题。然后总结了高温相变材料的制备方法,指出浸渗法、溶胶-凝胶法、冷压烧结法在实际应用中各有利弊,相比之下,冷压烧结法是制备盐基复合材料最具成本效益的方法。最后重点介绍了高温复合相变材料在工业过程余热回收、电力调峰、太阳能热发电三个领域的应用现状,为研究不同场景下蒸汽型高温相变储热系统容量配置和经济评估方法提供了理论基础。  相似文献   

5.
相变储热研究进展(2)组合相变材料储热与应用潜力   总被引:6,自引:0,他引:6  
王剑锋 《新能源》2000,22(4):22-33
本文从两个方面总结了相变储热(LTES)的研究现状:①LTES在太空太阳能动力(DBP)发电系统和建筑物围护结构中的应用;②组合相变材料储热系统的研究历程和最新进展。  相似文献   

6.
本工作研究了基于高密度复合相变储热材料电热锅炉的分时配比供热系统,对高密度复合相变储热材料及其电热锅炉进行了描述。结合冬季供热的负荷系数随室外环境温度的变化规律,对分时配比供热系统蓄热设备进行了优化设计,提出了分时配比供热系统的优化原则。结合城市供热的示范工程,分时配比供热系统与全蓄热式供热系统比较,不仅能够节省锅炉房空间31%,节约初投资33%,与传统直热式电锅炉比较节省运行费用46%,同时减少了锅炉房的用电负荷,降低了电力增容压力。通过供热负荷分析说明了分时配比供热系统具备极寒天气的供热调峰能力和设备备用功能。  相似文献   

7.
用于墙体中的固-固相变材料储热性能的研究   总被引:3,自引:0,他引:3  
使用固一固相变材料作为墙体中的储能材料不会发生渗漏.能增加墙体的蓄热能力,减小室内温度波动,减少建筑能耗。通过实验研究了多元醇类相变材料组成的二元体系在不同组成下的储热性能,从材料的相变温度和相变潜热分析其应用于墙体中的可行性。研究结果表明:在一定的组成下,多元醇二元体系可达到墙体储能要求的相变温度,且相变潜热较大,是理想的墙体相变储能材料。  相似文献   

8.
《可再生能源》2019,(11):1611-1615
膨胀珍珠岩具有较好的吸附性能,利用膨胀珍珠岩作为封装基体能够降低Na_2SO_4的泄漏风险。文章以膨胀珍珠岩和Na_2SO_4为原料,制备了一种新型的相变储热材料,然后通过实验分析了该相变储热材料的储热性能、热稳定性等。分析结果表明:膨胀珍珠岩能够吸附大量的Na_2SO_4,并且可以将Na_2SO_4输送至其空腔结构内,形成相变储热材料;热循环期间,相变储热材料中的Na_2SO_4不会泄露,也不会与膨胀珍珠岩发生反应;热循环1 000 h后,相变储热材料的质量、相变潜热分别仅减少了4.60%,7.70%。  相似文献   

9.
针对相变材料的质量和最大储热能力因翅片占据相变储能装置的部分体积而下降的问题,实现翅片结构优化具有重要意义。本工作在传统纵向翅片的基础上根据分叉形状提出了一种新型翅片来提高管壳式相变储能罐的储热性能,并针对该装置中相变材料带自然对流的熔化过程进行了三维数值模拟研究,分析了翅片数量、传热流体的入口温度和流速对相变材料熔化过程的影响。研究结果表明:与具有同等体积和数量的纵向翅片相比,新型分叉翅片显著加快了管壳式相变储能罐的蓄热过程。与无翅片和纵向翅片相比,新型分叉翅片使相变材料的熔化时间分别缩短了59.9%和23.4%,平均储热速率分别提高了142.1%和31.4%。在不改变翅片体积的前提下,增加翅片的数量可以减少相变材料的熔化时间,提高平均储热速率,但当翅片数量超过6时,对储热性能的进一步改善效果不明显。提高传热流体的入口温度和流速不仅可以缩短相变材料的熔化时间,也可以增加总储热量和平均储热速率。研究结果可为管壳式储能装置的结构优化和太阳能的高效利用提供一定的参考价值。  相似文献   

10.
建筑的能源成本随着建筑规模的不断扩大在不断提升,因此找到节能环保、价格低廉的建筑材料非常重要.为此,研究了复合相变储热材料在建筑节能中的应用这一课题.复合相变储热材料在混凝土中的应用,增强了混凝土的蓄热能力;运用在保温墙中,可以提升保温墙的控温能力;最后将复合相变储热材料与涂料相融合,提升了涂料的黏结强度.通过实例分析...  相似文献   

11.
通过探讨材料烧成温度和无机盐质量分数的影响,发现NaNO3/SiO2和Na2CO3-Li2CO3/MgO的烧成温度分别在330℃和520℃、无机盐质量分数均达到70%时冷热循环性能较好。同时研究了冷热循环测试对这两种储热材料机械性能的影响,探索出在长期使用过程中材料力学性能的变化规律。  相似文献   

12.
为了探索偏心分形翅片管对相变储热单元性能强化的作用机理,对偏心分形翅片管相变储热单元中石蜡的熔化展开了二维非稳态模拟研究。在考虑自然对流的情况下对比研究了偏心矩形翅片和偏心分形翅片两种储热单元的传热特性。并对偏心分形翅片结构进行了局部强化,选择矩形翅片、Y型翅片和分型翅片3种方案。结果表明,偏心分形翅片结构对自然对流的促进高于偏心矩形翅片结构且整体温度分布更均匀,这与分型翅片可以促进热量由点到面的扩散相符。在3种局部强化方案中,偏心分形翅片强化效果最佳,且整个过程的熔化速率都有提高,使熔化时间缩短了70%。这对管壳式相变蓄热器的性能提升提供了很好的理论指导,进一步扩展了其在储能领域的应用前景。  相似文献   

13.
为克服太阳能不连续与不稳定引起的建筑物室内温度波动的现象,文章以石蜡与高岭土为试验原料,制备一种用于建筑墙体隔热保温的新型高岭土基相变储热材料。采用XRD,SEM,FTIR和DSC测试方法研究了相变储热材料的结构与性能。结果表明:高岭土具有良好的吸附性能,能物理吸附大量的石蜡至其孔隙结构;石蜡高岭土相变储热材料的熔融和冷凝温度分别为27.5,25.3℃,熔融和冷凝相变潜热值分别为33.5,32.9J/g;服役期间,石蜡未从储热材料中泄露,也未与高岭土化学键合;经1 000次循环试验后,储热材料的相变温度与相变潜热值变化不显著。高岭土优异的吸附能力赋予了该储热材料优异的吸储热能力。高岭土与石蜡较好的物理化学相容性使储热材料具有优良的化学稳定性。  相似文献   

14.
吕学文  考宏涛 《节能》2009,28(12):9-11
总结近年来国内外相变储能材料的研究状况,包括相变储能材料的制备、传热性能、相变过程数值模拟和应用等,并对复合相变储能材料的传热性能研究方法的前景作了展望。  相似文献   

15.
以莫来石陶瓷和AlSi_(12)合金为原料,合成一种新型的相变储热材料。分析服役期间相变储热材料的物理化学性质,及其相组成、显微结构的变化规律,并探讨AlSi_(12)合金的氧化损坏对相变储热材料储热性能的影响。分析结果表明:经莫来石陶瓷封装的AlSi_(12)合金具有优良的抗氧化性,持续服役1 000 h后,AlSi_(12)合金的氧化增重率仅为3.75%;服役期间,AlSi_(12)合金中部分Al元素被氧化成Al_2O_3,导致了AlSi_(12)合金的相变温度范围变窄,储热量随之减小,从而影响了AlSi_(12)合金的储热性能;AlSi_(12)合金不会严重腐蚀莫来石陶瓷,也不会向莫来石陶瓷渗透,且部分Al_2O_3积聚在莫来石陶瓷表面,从而降低了AlSi_(12)合金在服役后期的氧化速度。研究结果为利用AlSi_(12)合金制备相变储热材料提供参考。  相似文献   

16.
采用热塑性弹性体SEPS/OP10E C-PCMs通过物理交联机理,熔融共混法制备得到一种可形变,力学性能较强,可浇筑塑形的定型复合相变材料SEPS/OP10E C-PCMs。加入SEPS/OP10E-PEG 2000加强力学性能,探明了物理交联机理以及力学性能增强机理。实验借助多种测试表征手段如差示扫描量热法(DSC)、综合热分析法(TG)、拉力-应力测试等,探究其储热性能、热稳定性及力学性能等。测试结果表明,SEPS/OP10E-PEG 2000具有较高的潜热值,且50次加热-冷却循环后无石蜡泄漏,热稳定性良好,且最大拉伸率为652.3%,力学性能较强。并将这种具有浇筑塑形的SEPS/OP10E-PEG 2000应用于蓄冷箱中,其可在7~9℃温度下维持2.6 h之久。这种新型具有浇筑性能且各项热特性较强的复合相变材料在冷链运输中降低了储热材料的空间占比,使蓄冷箱精准控温能力和保冷性能增强的同时有效节约了冷链运输空间。  相似文献   

17.
组合式相变材料组分配比与储热性能研究   总被引:2,自引:0,他引:2  
方铭  陈光明 《太阳能学报》2007,28(3):304-308
采用焓法对组合式相变材料(PCM)储热系统的相变过程进行了数值计算,分析了组合式相变材料中各个PCM组分质量分数的变化对系统储热性能的影响。结果表明,对于组合式相变材料储热系统,存在着最优组分配比,使得系统的储热性能达到最佳。  相似文献   

18.
由于高岭土具有优异的吸附性和包覆性,文章以高岭土为载体,硬脂酸钠为相变材料,制备出一种新型的高岭土/硬脂酸钠相变储热材料,并利用XRD,SEM,FTIR和DSC现代测试技术对该相变储热材料的结构和各项性能进行研究。分析结果表明:高岭土和硬脂酸钠之间存在吸附关系,二者未发生化学反应;高岭土基相变储热材料的熔融、冷凝温度分别为252.86,256.91℃,熔融、冷凝相变潜热值分别为109.25,109.01 J/g;经500次热循环后,高岭土基相变储热材料的储热性能没有明显降低,高岭土与硬脂酸钠之间的结合方式也没有发生变化。  相似文献   

19.
以氨水为催化剂,乙酰胺作相变材料,采用溶胶-凝胶法制备出有机-无机复合相变蓄热材料。通过改变醇盐-醇-水体系配比及相变材料的加入量来控制蓄热能力和相变温度。采用差示扫描量热仪(DSC)和扫描电镜(SEM)进行表征。结果表明:含相变材料35.8%的复合材料的相变温度为32.0℃,相变潜热高达176.4kJ/kg,经过1500次循环后其相变温度和潜热变化不大。氨水和相变材料对复合材料性能的影响显著:随着氨浓度的增加,复合材料粒径增大;相变材料增多,复合材料储热能力提高,材料致密度增加。  相似文献   

20.
向相变材料中添加金属泡沫可以解决相变材料低导热率引起的换热效果较差等问题,提高系统的整体蓄热效率。然而,复合相变材料的传热性能受金属泡沫孔隙率分布的影响较显著,为进一步提高相变储能单元的传热性能,本工作基于低孔隙率金属泡沫-相变材料(PCM)复合储能系统,建立了一种新的梯度孔隙率金属泡沫结构,通过数值模拟方法,对蓄热单元熔化过程中的熔化率、储能速率、储能总量进行分析,系统研究了孔隙率沿加热方向负梯度分布、正梯度分布对复合相变材料熔化速度和储热性能的影响。研究结果表明,负梯度孔隙率结构可以进一步提高储能系统的储热效率,其中,孔隙率梯度为0.12(案例S-6)时增强效果最显著。在熔化周期的不同阶段,负梯度孔隙率对复合材料的传热均有不同程度增强,对于S-6,在1000 s、2000 s、2600 s时,熔化率相较于均匀孔隙率结构分别增加了0.67%、2.31%、9.90%;随着孔隙率梯度的增加,相变材料的热性能提高越显著,与均匀孔隙结构相比,改进的负梯度孔隙率结构其完全熔化时间最高可缩短7.32%,储热速率可提高8.02%。对于正梯度孔隙率结构,其对熔化速度没有显著影响,但是储热总量可提高0.49%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号