首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combined effects of moderate temperatures and the electro-activated aqueous solutions of potassium acetate and potassium citrate on the inactivation of C. sporogenes PA 3679 spores (D121°C = 1.18 min) were studied. Four types of solutions (potassium acetate with/without KCl and potassium citrate with/without KCl) were activated at 400 mA for 60 min. The oxidation reduction potential (ORP) and pH values ranged from + 417.50 to + 1043.33 mV and 3.18 to 3.47, respectively. The combination of these solutions with a moderate heat treatment (95 °C, 105 °C, and 115 °C) for different time (5, 10, 20, and 30 min) was sufficient to reach a 100% of spore destruction (inactivation) in a medium with an initial contamination level comprised between 7.0 and 7.8 log CFU/mL. The sporicidal effect of solutions was also present even if activated solutions were applied alone against spores without being combined with heat treatment. Spore morphology was determined under transmission electron microscopy and showed that there were important damages, such as rupture of spores and release of spore components in all of the treated spores. Thus, the sporicidal effect detected was the result of inactivation mechanisms of electro-activated solutions on spores. In almost all of observed micrographs, there were coreless spores, deformed spores, or debris of spores. The current investigation can be used for achieving further studies in order to better understand the mechanisms of inactivation of C. sporogenes spores by electro-activated solutions.Industrial relevanceThis research article aims to study the combined effect of electro-activated potassium acetate and citrate solutions and moderate heat treatment on the viability of Clostridium sporogenes in model solutions as a non-pathogenic surrogate of Clostridium botulinum. The objective was to use hurdle technology to produce nutritious, minimally processed foods while ensuring food safety. Moreover, this approach allowed for a reduced level of sodium in canned foods since the solutions were sodium-free.  相似文献   

2.
The contamination of nut products, like almonds, with human pathogens is a reoccurring concern in the food industry. In this study the inactivation of Salmonella Enteritidis PT 30 (ATCC BAA-1045) on the surface of unpeeled almonds by cold atmospheric pressure plasma was investigated. Air, O2, N2, CO2 and 90% CO2 + 10% Ar were used as process gas. Inoculum preparation and inoculation of almonds was done according to the guidelines recommended by the Almond Board of California. Furthermore, impact of plasma treatment on product color was measured. All plasma treatments inactivated Salmonella. Maximum achieved inactivation depends on the used process gas. Air plasma inactivated > 5.0 log10, O2 plasma 4.8 and N2 plasma 2.0 log10 after 15 min treatment. The plasma treatment with air and N2 resulted in a browning of the unpeeled almond's surface color. Whereas the other used plasma did not alter the color considerably.Industrial RelevanceThe contamination of raw nuts with human pathogens is an on-going food safety concern. The application of cold atmospheric pressure plasma has a high potential as a gentle technology for the surface decontamination. The results of this study suggest that a cold plasma treatment could be an alternative technology for the pasteurization of almonds. The use of air plasma achieved more than a 5 log10, which is in general required by the U.S. Food and Drug Administration for the approval as an alternative inactivation technology for food products. However, the scale up to commercial treatment levels requires the complete understanding of the involved product-plasma interactions.  相似文献   

3.
The influence of various environmental factors on Enterobacter sakazakii inactivation by pulsed electric fields was studied and the mechanisms underlying the changes in resistance were also explored. E. sakazakii PEF resistance was higher upon entering the stationary growth phase, but it did not significantly change with growth temperature. E. sakazakii cells were also more resistant to PEF in both acidified and low water activity media. Thus, for stationary-phase cells grown at 30 °C a treatment of 50 pulses at 31 kV/cm led to 5.1 log10 cycles of inactivation in media of pH 7.0 (aw > 0.99), 1.4 log10 cycles in media of pH 4.0 (aw > 0.99) and 0.3 log10 cycles in media of aw = 0.98 (pH 7.0). However, whereas the higher PEF tolerance in acid media was coincident with an increased number of cells capable of repairing their sublethally-injured cytoplasmic membranes, the higher resistance in media of lower water activity was not. To the best of our knowledge, this is the first time that sublethal injuries in outer membrane after PEF treatments have been found.Industrial relevanceThis work provides data about PEF inactivation kinetics and PEF resistance of E. sakazakii under several conditions that might be useful for designing food pasteurization processes by PEF technology. The occurrence of sublethal injuries in cytoplasmic and outer membranes under the most protective treatment conditions, gives the chance to develop combined processes that might increase the effectiveness of the PEF process.  相似文献   

4.
The effects of continuous (50,000, 60,000 and 70,000 psi with holding times of 5 and 10 min) and discontinuous (oscillatory) (six cycles at 60,000 psi with a holding time of 20 s) high hydrostatic pressure (HHP) treatments on the viability of two Salmonella Enteriditis strains (FDA and PT30) inoculated onto raw almonds were evaluated at 25, 50, and 55 °C. Complete inactivation of the S. Enteriditis was achieved in 0.1% peptone water after continuous pressurization at 60,000 psi and 25 °C for 5 min. Continuous pressurization of raw almonds inoculated with S. Enteriditis at 60,000 psi and 50 °C for 5 min resulted in less than a log reduction (log10 0.83) of vegetative cells. The decimal reduction time using the continuous pressurization parameters was determined to be 9.78 min. A discontinuous process consisting of six cycles of pressurization at 60,000 psi and 50 °C for 20 s provided greater than a one log reduction (log10 1.27 for FDA and log10 1.16 for PT30) of the S. Enteriditis concentration. The low water activity (aw) of the almonds was found to impart baroprotective attributes on the S. Enteriditis cells. When the almonds were directly suspended in water and then pressurized, a log10 reduction of 3.37 was achieved. HHP of certain dry foods appears to be feasible if the food is directly suspended in the pressurizing medium (water).  相似文献   

5.
Pathogenic bacteria such as Salmonella and Shigella flexneri have been linked to green onion contamination. This study was conducted to evaluate decontamination of Salmonella Typhimurium using a new formula of sanitizer washing (0.4 mg/mL thymol and five new formula sanitizers including 300 ppm H2O2 + 4% SDS, 2 mg/mL citric acid + 4% SDS, 0.2 mg/mL thymol + 4% SDS, 0.2 mg/mL thymol + 2 mg/mL citric acid and 0.2 mg/mL thymol + 2 mg/mL acetic acid), pulsed UV light (PL) as well as synergy between the sanitizer wash and PL. New formula sanitizers based on decontamination efficacy of single washing solutions (organic acids, hydrogen peroxide (H2O2), essential oil or surfactant) were applied to decontaminate spot inoculated green onions. PL, the novel technique, alone has been applied to inactivate Salmonella on both dip and spot inoculated green onions. Salmonella inactivation of PL–new formula sanitizer combinations on dip inoculated green onions was investigated for their potential synergy. As a result, for spot inoculated green onions, 0.4 mg/mL thymol individually and the five new formula sanitizers all achieved higher log reduction of Salmonella (4.5–5.3 log 10 CFU/g reduction) than the 200 ppm chlorine washing. These new formulas of sanitizer would be potential alternatives to chlorine. The 5 s dry PL (4.6 log 10 CFU/g) or 60 s wet PL treatment (3.6 log 10 CFU/g) was better or comparable as chlorine washing. The sanitizer combinations did not provide significantly higher log reduction than PL, and PL has the potential of being used in the green onion industry for decontamination purpose. For dip inoculated green onions, none of our treatment provided > 0.8 log 10 CFU/g (0.6–0.8 log 10 CFU/g) reduction of Salmonella. As a result, the PL–new formula sanitizer combinations had no or minimal synergy to inactivate Salmonella dip inoculated on green onions.  相似文献   

6.
The impact of thermosonication (TS) and pulsed electric field (PEF), individually and combined, on the survival of Listeria innocua 11288 (NCTC) in milk was investigated. TS (400 W, 160 s) without pre-heating reduced L. innocua by 1.2 log10 cfu mL?1, while shorter treatment times produced negligible inactivation, suggesting TS to be a hurdle rather than an effective standalone treatment. PEF (30 and 40 kV cm?1, 50 μs) at 10 °C caused a reduction of L. innocua of 1.1 and 3.3 log cycles, respectively. The highest field strength (40 kV cm?1) combined with TS (80 s) led to 6.8 log10 cfu mL?1 inactivation. Milk pre-heated to 55 °C (over 60 s) prior to TS followed by PEF (30 and 40 kV cm?1) showed inactivation between 4.5 and 6.9 log10 cfu mL?1, the latter being comparable (P > 0.05) with thermal pasteurisation. The data indicate that TS followed by PEF represents a valid alternative for L. innocua inactivation in milk.  相似文献   

7.
The aim of this work was to investigate the efficacy of dielectric barrier discharge atmospheric cold plasma (DBD ACP) against bacteria associated with grains quality and safety. ACP inactivation efficacy was tested against biofilms formed by different strains of E. coli, Bacillus and Lactobacillus in grain model media and against B. atrophaeus endospores either in grain media or attached on abiotic surfaces. Effects were dependent on bacterial strain, media composition and mode of ACP exposure. ACP treatment for 5 min reduced E. coli spp., B. subtilis and Lactobacillus spp. biofilms by > 3 log10, whereas insignificant reductions were achieved for B. atrophaeus. ACP treatment of 5–20 min reduced B. atrophaeus spores in liquids by > 5 log10. Treatment for 30 min reduced spores on hydrophobic surface by > 6 log10, whereas maximum of 4.4 log reductions were achieved with spores attached to hydrophilic surface. Microscopy demonstrated that ACP caused significant damage to spores. In package ACP treatment has potential to inactivate grain contaminants in the form of biofilms, as well as spores and vegetative cells.Industrial relevanceThis study demonstrates that ACP technology is a promising tool for effective bio-decontamination which offers a wide range of possible applications including inactivation of microorganisms on cereal grains. However, due to the nature of the microbial contamination of grains and complex grain structures it may be necessary to optimise the potential for surface inactivation at several stages of grain processing and storage to enhance ACP efficacy against bacterial endospores.  相似文献   

8.
To investigate the effect of high pressure homogenization on virus inactivation, phages specific for Lactobacillus delbrueckii, Lactobacillus helveticus, Streptococcus thermophilus, Lactococcus lactis, Lactobacillus paracasei and Lactobacillus plantarum were studied. The influence of pressure, number of passes, suspension medium and phage concentration were studied at 25 °C. Reductions in viability were proportional to pressure and number of passes, though the inactivation extent was phage-dependent. At 100 MPa, some bacteriophages were completely inactivated (6 log10 reduction) after 3 or 5 passes, while others remained infective after 8 passes. For all phages, treatment at 60 MPa was insufficient for complete inactivation, even after 8 passes. No clear influence of suspending medium was observed. Inactivation seems to depend on phage concentration; the higher the initial load, the bigger the reduction achieved. Although these results showed that several phages studied are resistant to high-pressure homogenization, this strategy could be combined with others to control their presence in raw milk.  相似文献   

9.
Synergistic interaction of ultraviolet light (UV-A) and zinc oxide (ZnO) was investigated for enhanced inactivation of Escherichia coli BL21 and T7 bacteriophage in simulated wash-water. In the absence of organic content, UV-A (9.53 J/cm2) and 1 mM ZnO alone caused 3.9 and 0.7 log CFU/mL reductions respectively in logarithmic phase bacteria after 60 min, while a combined treatment caused 6 log CFU/mL reductions. Stationary-phase bacteria were more resistant and a combined treatment caused only 3.5 log CFU/mL reductions. Organic matter in the wash-water lowered the inactivation rates. Nevertheless, approximately 2-log reductions were observed at the highest organic load. T7 bacteriophage was not sensitive to UV-A alone. However, 1 mM photo-irradiated ZnO caused 6.00 log PFU/mL reductions after 60 min. Bacteriophage inactivation was also significantly lowered by organic matter. The reactive oxygen species generated from photo-irradiated ZnO were responsible for the microbial inactivation. UV-A irradiated ZnO is an attractive sanitation approach for fresh-produce washing.Industrial relevanceChlorine-based sanitizers that are conventionally used for washing fresh-produce suffer significant limitations including occupational hazard for workers from over-exposure to chlorine and safety hazards to the population due to formation of chlorinated organic matter. This study highlights that UV-A irradiated ZnO is a promising alternative to sanitize wash-water and fresh-produce and reduce the risk of bacterial as well as viral cross-contamination. Future studies are needed to optimize and scale-up this process for industrial use.  相似文献   

10.
The spores of Clostridium perfringens can survive and grow in cooked/pasteurized meat, especially during the cooling of large portions. In this study, 600 MPa high pressure thermal processing (HPTP) at 75 °C for the inactivation of C. perfringens spores was compared with 75 °C thermal processing alone. The HPTP enhanced the inactivation of C. perfringens spores in beef slurry, resulting in 2.2 log reductions for HPTP vs. no reductions for thermal processing after 20 min. Then, the HPTP resistance of two C. perfringens spore strains in beef slurry at 600 MPa was compared and modeled, and the effect of temperature investigated. The NZRM 898 and NZRM 2621 exhibited similar resistance, and Weibull modeled well the log spore survivor curves. The spore inactivation increased when HPTP temperature was raised from 38 to 75 °C. The results confirm the advantage of high pressure technology to increase the thermal inactivation of C. perfringens spores in beef slurry.Industrial relevanceC. perfringens spores may cause food/meat poisoning as a result of improperly handled and prepared foods in industrial kitchens. Thermal processes at 100 °C or higher are generally carried out to ensure the elimination of these pathogenic spores. High pressure processing (HPP) is a food pasteurization technique which would help to maintain the sensorial and nutritional properties of food. Preservation of foods with HPP in conjunction with mild heat (HPTP) would enhance the spore inactivation compared to thermal processing alone at the same temperature, due to a known germination–inactivation mechanism. This technology, together with the application of Good Manufacturing Practices, including rapid cooling, is a good alternative to the traditional methods for producing safe processed meat and poultry products with enhanced sensory and nutritional quality.  相似文献   

11.
《International Dairy Journal》2005,15(6-9):893-900
The combined effect of high-pressure (HP) treatment and bacteriocin-producing lactic acid bacteria (BP-LAB) on the survival of Listeria monocytogenes Scott A in cheeses made from raw milk that was inoculated with the pathogen at 4.80 log cfu mL−1, a commercial starter and one of seven strains of BP-LAB was investigated. On day 3, the counts of L. monocytogenes were 7.03 log cfu g−1 in a control cheese (without BP-LAB, not HP treated), 6.06–6.74 log cfu g−1 in cheeses with BP-LAB, 6.13 log cfu g−1 in a cheese without BP-LAB and treated on day 2 at 300 MPa, 2.01 log cfu g−1 in a cheese without BP-LAB and treated on day 2 at 500 MPa, 3.83–5.43 log cfu g−1 in cheeses with BP-LAB and treated on day 2 at 300 MPa, and 1.81 log cfu g−1 or less in cheeses with BP-LAB and treated on day 2 at 500 MPa. HP treatment was more effective on day 51 than on day 2.  相似文献   

12.
In this work, the Polypropylene (PP) film was surface modified by Oxygen plasma treatment and the effect of mechanical, barrier and adhesion properties was studied. The PP film was plasma treated with various RF power settings of 7.2 W, 10.2 W and 29.6 W in various time intervals of 60 s, 120 s, 180 s, 240 s and 300 s. To characterize the wettability, the contact angle was measured and the surface energy values were estimated with different test liquids. The generation of oxygen functional groups on the surface of plasma modified PP and the surface change characterization were observed by attenuated total reflection-Fourier transform infrared spectroscope (ATR-FTIR) and they resulted in wettability improvement. The roughness of the PP film and the surface morphology were analyzed by Atomic Force Microscopy (AFM). It was found that the roughness value increased from 1.491 nm to 7.26 nm because of the increase of treatment time and RF power. The PP crystallinity structure of the untreated and treated PP was evaluated by X-ray diffraction analysis (XRD). The bond strength of the untreated and surface modified films were measured by T-peel test method. For the untreated and oxygen plasma treated sample, the mechanical properties like Tensile Strength and the barrier properties like oxygen transmission rate (OTR), Water vapor transmission rate (WVTR) were also calculated. From the results, the tensile strength reduced from 6 MPa to 1.350 MPa because of polypropylene etching and degradation. The OTR increased from 1851.2 to 2248.92 cc/m2/24 h and the Water vapor transmission rate increased from 9.6 to 14.24 g/m2/24 h.Industrial RelevancePlasma technology applied to packaging and printing industry is a dry, environmentally- and worker-friendly method to achieve surface alteration without modifying the bulk properties of different materials. In particular, atmospheric non-thermal plasmas are suited because most are heat sensitive polymers and applicable in continuous process. In the last years plasma technology has become a very active, high growth research field, assuming a great importance among all available material surface modifications in packaging industry.  相似文献   

13.
The objective of this work was to study the systematic inactivation of immobilized heat-resistant, validated wild-type bacteria (sporulated Bacillus subtilis D2 and vegetative Cronobacter sakazakii H30) in porous enlarged model food powder particles using the Vacuum-Steam-Vacuum (VSV) process. Developed bacterial sensors allowed a local contamination of model particles at a defined intraparticle position. Contradicting previous studies, a spore inactivation of 4 log 10 CFU in high depths of up to 10 mm (particle core) was possible by VSV treatment despite a noticeable intraparticle attenuation. To mimic inactivation in smaller food powder particles, similar-sized bacterial sensors were treated and showed slightly curve-linear kinetics explained by a short warm-up phase (lag time). Measured inactivation was lower than that predicted by traditional capillary (z = 8.0   C) treatment of suspensions due to non-linearity in the high temperature regime. This could be described by twice as high z values of 15.4 °C (no lag time) and 17.2 °C (lag time), respectively.Industrial relevance of present workThe emerging Vacuum-Steam-Vacuum (VSV) decontamination process aims at efficient heat transfer on solid surfaces and pores using saturated steam as the heat-transferring fluid. VSV was already used for treating vegetables, fruits, meats and spices. This work describes use of VSV for dry porous solids.  相似文献   

14.
Three Myoviridae phages (DT1, DT5 and DT6) specific for pathogenic Escherichia coli were studied, either individually or as cocktails, for their lytic activity on in vitro challenge tests. Also, cocktail ability to reduce artificial contamination on hard surfaces (glass coverslips and stainless steel coupons) by three pathogenic Escherichia coli strains (EPEC920, non-O157 STEC ARG4827 and O157:H7 STEC464) was tested. Assays of phage stability during refrigerated storage showed that the three phages evaluated retained a high viability after two months at 4 °C. Challenge tests showed high reductions in viable cells, of up to 6.4 log CFU ml 1, for all tested strains at 37 °C. Efficiency was somewhat lower at 4 °C, though biocontrol levels were still good, reaching values of up to 3.8 log CFU ml 1. Considering only results obtained at 37 °C, phage cocktails produced the highest reduction in most cases. Treatments with phage cocktails produced complete inactivation (ca. 5–6 log CFU ml 1) of EPEC920 and O157:H7 STEC464 on glass coverslips, and of EPEC920, non-O157 STEC ARG4827 and O157:H7 STEC464 on stainless steel coupons, at both temperatures (4 °C and 37 °C) and multiplicity of infection (ca. 103 and 107) tested. However, some strains not detected at 3 h were sometimes detected at 24 h, and inactivation of non-O157 STEC ARG4827 on glass coverslips was never accomplished; viable cell reductions in all these cases ranged from 1.2 to 5.4 log CFU ml 1. Our results suggest that lytic phages, either individually or as a cocktail, may be useful for reducing contamination on hard materials used in food processing surfaces. To our knowledge, this is the first study focused on the use of bacteriophages to reduce contamination of food processing surfaces by EPEC and non-O157 STEC strains.  相似文献   

15.
Enteric noroviruses are occasionally detected in Kimchi, which is a traditional dish made of fermented vegetables. This study was aimed at examining the effects of two levels of salt concentrations on the survival of murine norovirus-1 (MNV-1), a human norovirus surrogate, in experimentally contaminated cabbage Kimchi stored at 5 °C for 10 weeks. The number of total aerobic bacteria (TAB) and lactic acid bacteria (LAB), MNV-1 titer pH, and acidity were measured every week. The titers of MNV-1 in both low (1.17%) and normal (2.22%) salinity cabbage Kimchi were significantly (P < 0.05) decreased with increase in storage time. The overall reduction was 1.75 log10 plaque-forming unit (PFU)/mL in normal salinity cabbage Kimchi and 1.24 log10 PFU/mL in low salinity cabbage Kimchi. The time required to reduce the titer by > 1 log10 PFU/mL in normal and low salinity cabbage Kimchi were 4 and 8 weeks, respectively. The pH value under both salinities significantly (P < 0.05) decreased until 4 weeks. The maximum acidity was 0.83% and 0.79% in normal and low salinity cabbage Kimchi, respectively, during the 10 weeks. The population of TAB and LAB reached up to 7.33 log10 colony-forming unit (CFU)/g as a maximum population during the storage period of 3 weeks in normal salinity cabbage Kimchi. However, the population of TAB and LAB in low salinity cabbage Kimchi reached to 6.99 and 7.04 log10 CFU/g at 5 and 4 weeks, respectively. Through these findings, fermentation factors such as TAB, LAB, pH, and acidity of cabbage Kimchi were influenced by salt concentration. The inactivation of MNV-1 in normal salinity cabbage Kimchi was much faster than that in low salinity cabbage Kimchi because the fermentation in normal salinity cabbage Kimchi progressed more quickly than that in low salinity cabbage Kimchi. However, both salinity cabbage Kimchi were able to infect cells for 70 days even though the MNV-1 was reduced over 1 log10 during fermentation. Therefore, the way to protect cabbage Kimchi from norovirus must be considered.  相似文献   

16.
Non-thermal processed foods are generally cold stored and distributed. The use of ultrasound for food preservation has attracted the interest of many research groups. In the current study, the thermosonication (TS, simultaneous ultrasound and thermal process) inactivation of psychrotrophic Bacillus cereus spores was investigated (24 kHz, 210 μm, 0.33 W/mL or W/g). First, the effectiveness of a 1.5 min TS process at 70 °C in skim milk, beef slurry, cheese slurry, and rice porridge was investigated. The TS was more effective than sole thermal treatment in reducing B. cereus spores in rice porridge, beef slurry and cheese slurry by 7, 6, and 4 fold, respectively. Then, the first-order D- and z-values for TS and thermal processing in skim milk and beef slurry, and the best model to fit TS inactivation of B. cereus spores in beef slurry were determined. The D70 °C-values in skim milk were 2.9 min for TS and 8.6 min for the thermal treatment. And in beef slurry, values of 0.4 min for TS and 2.3 min for thermal were estimated. It was found that the Log-logistic model better described the TS spore inactivation in beef slurry. The ultrasound technology required 20–30 °C lower temperatures for the same spore inactivation, which resulted in better food quality and energy saving gains.  相似文献   

17.
The effects of high pressure homogenization (HPH) on microbial inactivation and quality attributes (physio-chemical properties, bioactive components and antioxidant capacity) of mango juice, as well as their changes during storage at 4 °C and room temperature were investigated. Pressure levels ranged from 40 to 190 MPa, the inlet temperature from 20 °C to 60 °C and the number of passes from 1 to 5. Complete inactivation of molds and yeasts was achieved by 1 and 3 passes at 190 MPa and 60 °C, while total plate count was below 2.0 log10 CFU/mL. No multiplication of microorganisms was observed in mango juice over 60 days of storage at 4 °C. HPH treatment could retain or even increase the carotenoids and total phenols by 11.8% and 21.4%, respectively, while significant reductions were found for heat treatment (HT) samples. During the storage of 60 days, HPH treatment also provided better preservation of color, bioactive components and antioxidant capacity of mango juice than HT.Industrial relevanceHigh pressure homogenization (HPH) is a novel non-thermal technique, particularly suitable for continuous production of liquid foods limiting thermal damage and promoting “freshness”. Results showed that high pressure homogenization had the advantage of notably reducing the microbial load to levels equivalent to thermal pasteurization. Moreover, HPH treatment was superior to heat treatment with regard to post-treatment levels of bioactive.  相似文献   

18.
The efficacy of a pressure–ohmic–thermal sterilization (POTS) for Bacillus amyloliquefaciens and Geobacillus stearothermophilus spore inactivation was investigated. Spores (2.5 × 108 cfu/ml) were inoculated in 0.1% NaCl solution (pH 5.0 and 7.0), green pea puree (pH 6.1), carrot puree (pH 5.0) or tomato juice (pH 4.1). Samples were ohmically (50 V/cm) treated at 600 MPa and 105 °C for various holding times using a laboratory-scale high-pressure processor. B. amyloliquefaciens and G. stearothermophilus spores suspended in 0.1% NaCl solution (pH 7.0) were inactivated by 4.6 and 5.6 log, respectively, for a 30-min holding time. B. amyloliquefaciens and G. stearothermophilus spores in tomato juice were reduced by 3.1 and 4.8 log, respectively, for a 10-min holding time. Spore germination was highest in the G. stearothermophilus suspended in 0.1% NaCl solution (pH 7.0). POTS treatment appears to be a potent method for inactivating pressure–thermal resistant bacterial spores.Industrial RelevanceFood industry is interested in developing superior quality low-acid shelf-stable foods. This study evaluated the pressure–ohmic–thermal sterilization (POTS) for the inactivation of Bacillus amyloliquefaciens and Bacillus stearothermophilus endospores. The impact of food matrices and acidity on the spore resistance was also investigated. Knowledge gained from the study will help the food processors for understanding the importance of various POTS treatment parameters for sterilization of low-acid foods.  相似文献   

19.
Chicken skin and chicken meat display different buffering effects which may impact the survival of Salmonella attached to them when treated with acids. This study investigated the role that differences in fat composition of chicken skin and meat play in their buffering capacity. The survival of Salmonella attached to chicken skin and meat in the presence of fat, and treated with acetic acid was also investigated. Fat was extracted from chicken skin and meat and the buffering capacities of chicken skin, meat, extracted fat and their respective remnants were determined. Two strains of Salmonella Typhimurium and two strains of S. Enteritidis were attached independently to each of the chicken component listed above and enumerated before and after treatment with 0.3 M acetic acid. Chicken skin has a higher fat content as compared to chicken meat. Skin (13 mmol H+/(pH1 kg)) had a stronger buffering capacity (p < 0.05) than the extracted fat alone and skin remnants alone (7.0 mmol H+/(pH 1 kg) and 6.9 mmol H+/(pH 1 kg) respectively). From an initial inoculum (~ 9 log CFU/g), Salmonella cells attached better (p < 0.05) to chicken meat (~ 8 log CFU/g) and chicken skin (~ 7 log CFU/g) than extracted fat (~ 1.5 log CFU/g). Skin remnants without fat were better (p < 0.05) at protecting attached Salmonella than other chicken components. For example S. Typhimurium ATCC 33062 decreased ~ 1 log CFU/g (p < 0.05) on skin remnants after acetic acid treatment while its viable counts on other components decreased from ~ 1.5 to 7 log CFU/g (p < 0.05). We suggest that the fat content present in the skin may enhance the vulnerability of attached cells to acetic acid.  相似文献   

20.
The probiotics, Lactobacillus acidophilus PTCC1643 and Lactobacillus rhamnosus PTCC1637, were encapsulated into uncoated calcium alginate beads and the same beads were coated with one or two layers of sodium alginate with the objective of enhancing survival during exposure to the adverse conditions of the gastro-intestinal tract. The survivability of the strains, was expressed as the destructive value (decimal reduction time). Particle size distribution was measured using laser diffraction technique. The thickness of the alginate beads increased with the addition of coating layers. No differences were detectable in the bead appearance by scanning electron microscopy (SEM). The alginate coat prevented acid-induced reduction of the strains in simulated gastric juice (pH 1.5, 2 h), resulting in significantly (P < 0.05) higher numbers of survivors. After incubation in simulated gastric (60 min) and intestinal juices (pH 7.25, 2 h), number of surviving cells were 6.5 log cfu mL?1 for L. acidophilus and 7.6 log cfu mL?1 for L. rhamnosus by double layer coated alginate microspheres, respectively, while 2.3 and 2.0 log cfu mL?1 were obtained for free cells, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号