首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To introduce N‐methylmorpholine‐N‐oxide (NMMO) process to prepare antibacterial lyocell fiber, the blend films of O‐carboxymethyl chitosan (O‐CMCS) and cellulose were prepared. O‐CMCS in aqueous suspension with particles having a surface mean diameter of 2.24 μm was blended with cellulose in NMMO hydrate. The blend films with different O‐CMCS content were prepared with the blend solutions. SEM confirmed that O‐CMCS remained within the cellulose film in the particle. The mechanical properties of the blend films show little increased value when O‐CMCS was less 5%; however, it decreased sharply when O‐CMCS was over 8%. Thus, the optimum O‐CMCS content may give a good combination of antibacterial action and mechanical properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4601–4605, 2006  相似文献   

2.
新型碳纤维用原丝——高强高模Lyocell纤维纺丝工艺研究   总被引:5,自引:1,他引:5  
采用天然高相对分子质量纤维素脱脂棉为原料 ,制备了高强高模纤维素纤维 ( L yocell纤维 ) ,并用此作为碳纤维原丝 ,成功制得了强度优于粘胶基碳纤维的 L yocell基碳纤维。考察了高相对分子质量纤维素的溶解特点 ,纺丝工艺对 L yocell纤维聚集态及性能的影响 ,比较了 L yocell纤维和粘胶原丝的表面及截面形态。实验表明 :高相对分子质量纤维素溶解的静溶胀时间和温度对其溶解有明显的影响 ;纺丝过程中 ,大的气隙长度对提高纤维的性能有利 ;随着凝固浴中 N -甲基吗啉 N -氧化物( NMMO )的浓度增加 ,纤维的强度和模量增加 ,当其在凝固浴中的质量分数达到 10 %时 ,强度模量最大 ,浓度继续增加 ,纤维的力学性能开始下降 ;拉伸比增加 ,L yocell纤维的强度模量增加 ,当拉伸比大于 3.0时 ,纤维的性能略有下降  相似文献   

3.
In this paper, the development of diameter and surface temperature of Lyocell fibers was measured online. The diameter and tensile force on the spin line in the coagulation bath were traced. The velocity, velocity gradient and the tensile stress profiles development of the fibers in the air gap were studied. The apparent elongational viscosity of cellulose N‐methylmorpholine‐N‐oxide monohydrate (NMMO‐MH) solutions was studied by steady‐state melt spinning theory. The decrease of the fiber diameter was mainly taking place near the spinneret, and the decrease of the diameter became more dramatic with increasing taking‐up speed. The surface temperature of the fibers was also dropping faster with increasing taking‐up speed for the heat transfer coefficient increased. The diameter of the Lyocell fibers almost did not change before and after it entered the coagulation bath. The tensile force on the spin line increases with increasing taking‐up speed and coagulation bath length. The velocity and the tensile stress increase slowly near the spinneret, and then accelerate. The apparent elongational viscosity of cellulose NMMO‐MH solutions decreases with increasing temperature at the same elongation rate and decreases with increasing elongation rate at the same temperature. The fiber of the Lyocell process was not really solidified in the air gap and a gel or rubbery state was formed.  相似文献   

4.
Two types of O-carboxymethylated chitosan (O-CMCh)/cellulose polyblends were prepared by mixing cellulose LiCl/N,N-dimethylacetamide (DMAc) solution with O-CMCh aqueous solution (I) or DMAc emulsion (II) and their corresponding films (I and II) were regenerated in water. The (O-CMCh)/cellulose films obtained were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and wide-angle X-ray-scattering (WAXS). FTIR analyses showed that amino groups of O-CMCh were not affected during the film formation. SEM observations indicated that the O-CMCh/cellulose polyblend displayed a heterogeneous microstructure. O-CMCh microdomains dispersed in the cellulose matrix of the blend film. Blend film I showed a better dispersion of the O-CMCh microdomains than blend film II did. DSC and WAXS analyses suggested that, for both two kinds of the blend films, the addition of O-CMCh did not significantly influence the crystallinity and thermal properties of cellulose. The antibacterial activity of the films against Escherichia coli (E. coli) was also measured via optical density method. Both blend films I and II exhibited satisfying antibacterial activity against E. coli, even the O-CMCh concentration was only 2 wt%. Due to the coagulation effect of water on the polyblend, O-CMCh water solution is suitable for the preparation of the blend film with low O-CMCh concentration, while O-CMCh DMAc emulsion should be selected when high O-CMCh concentration is needed.  相似文献   

5.
Single‐walled carbon nanotube (SWNT)/cellulose nanocomposite films were prepared using N‐methylmorpholine‐N‐oxide (NMMO) monohydrate as a dispersing agent for the acid‐treated SWNTs (A‐SWNTs) as well as a cellulose solvent. The A‐SWNTs were dispersed in both NMMO monohydrate and the nanocomposite film (as confirmed by scanning electron microscopy) because of the strong hydrogen bonds of the A‐SWNTs with NMMO and cellulose. The mechanical properties, thermal properties, and electric conductivity of the nanocomposite films were improved by adding a small amount of the A‐SWNTs to the cellulose. For example, by adding 1 wt % of the A‐SWNTs to the cellulose, tensile strain at break point, Young's modulus, and toughness increased ~ 5.4, ~ 2.2, and ~ 6 times, respectively, the degradation temperature increased to 9°C as compared with those of the pure cellulose film, and the electric conductivities at ? (the wt % of A‐SWNTs in the composite) = 1 and 9 were 4.97 × 10?4 and 3.74 × 10?2 S/cm, respectively. Thus, the A‐SWNT/cellulose nanocomposites are a promising material and can be used for many applications, such as toughened Lyocell fibers, transparent electrodes, and soforth. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Electrospun nylon-6/chitosan (nylon-6/Ch) nanofibers were prepared by nanospider technology. Quaternary ammonium salts as antibacterial agent were immobilized onto electrospun nylon-6/Ch nanofibers via surface modification by soaking the mat in aqueous solution of glycidyltrimethylammonium chloride (GTMAC) at room temperature overnight to give nylon-6/N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride (nylon-6/HTCC). The morphological, structural and thermal properties of the nylon-6/ch nanofibers were studied by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). Biological screening has demonstrated the antibacterial activity of the electrospun nanofibers against Gram negative bacteria, Escherichia coli 35218, and Pseudomonas aeruginosa and Gram positive bacteria, Staphylococcus aureus 24213 among the tested microbes. Thus, the study ascertains the value of the use of electrospun nanofibers, which could be of considerable interest to the development of new antibacterial materials for biomedical applications.  相似文献   

7.
采用电位滴定法对Lyocell纤维生产过程中NMMO质量分数进行了测定,探讨了超声时间、溶剂体积比等测试条件对测试结果的影响,并对测试方法的准确性及精密度进行了分析,证实该方法稳定、便捷,适用于生产过程中NMMO/水/纤维素三相体系中NMMO质量分数的快速测定。  相似文献   

8.
将纤维素溶解于N-甲基吗啉-N-氧化物(NMMO)中,采用干喷湿纺的方法制备了一种全新的Lyocell长丝非织造材料。通过试验考察了不同牵伸倍数对Lyocell长丝非织造材料相关性能的影响,采用扫描电镜、X射线衍射仪对Lyocell长丝非织造材料进行了表征,并对Lyocell长丝非织造材料和Lyocell短纤非织造材料的力学性能、掉屑性能以及吸水性能进行了对比研究。结果表明:对于该体系,制备工艺参数中的牵伸倍数对样品中纤维的直径、样品的厚度影响较大;同时也间接影响样品的力学性能、掉屑性能以及吸水性。Lyocell长丝非织造材料的吸水性能略优于Lyocell短纤非织造材料,但力学性能和掉屑性能远优于后者。  相似文献   

9.
To improve the dyeing properties of ramie, the ecofriendly organic solvent N‐methylmorpholine‐N‐oxide (NMMO) was used to substitute sodium hydroxide as a ramie‐fiber swelling solvent. Through padding and baking pretreatment, ramie fabric was modified by an NMMO aqueous solution. Ultraviolet–visible spectrophotometry, Fourier transform infrared spectroscopy, X‐ray diffraction, and differential scanning calorimetry were used to investigate the effects of NMMO pretreatment on the structure of the ramie, whereas the color strength (K/S, where K is the light absorption coefficient and S is the scattering coefficient), adsorption isotherm, and dye uptake rate curve were measured to investigate the effects of NMMO pretreatment on the dyeing properties of the ramie. The results show that the ramie fiber experienced a limited and irreversible swelling because of the partial breakage of interhydrogen and intrahydrogen bonds of cellulose molecules in the amorphous area, but the crystal and chemical structure of the ramie fiber did not change obviously under the experimental conditions. The K/S value of the NMMO‐modified ramie fabrics dyed with reactive dyes increased by about 100%, and the dye uptake increased by 27.88% compared to that of the raw sample, whereas the standard affinity and diffusion coefficient value of the reactive dyes on the NMMO‐modified ramie fabric were higher than those of the raw ramie fabric. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
高半纤维素浆粕制备Lyocell纤维的研究   总被引:1,自引:0,他引:1  
采用半纤维素质量分数21%的高半纤维素浆粕在N-甲基吗琳-N-氧化物(NMMO)水溶液中制备Lyocell纤维,并与半纤维素质量分数为10%的高α-纤维素浆粕的可纺性进行了对比。结果表明:高半纤维素浆粕在溶剂NMMO·H_2O中更易溶解,其过滤性能和可纺性能好,可在较高浆粕浓度下纺丝,制备成Lyo- cell纤维的产率高,且能提高Lyocell纤维的力学性能。高半纤维素浆液的稳定性能略低,在溶剂回收中需要消耗较多的双氧水进行氧化回收溶剂NMMO。  相似文献   

11.
Chemical cellulose (dissolving pulp) was prepared from ascidian tunic by modified paper‐pulp process (prehydrolysis with acidic aqueous solution of H2SO4, digestion with alkali aqueous solution of NaOH/Na2S, bleaching with aqueous NaOCl solution, and washing with acetone/water). The α‐ cellulose content and the degree of polymerization (DPw) of the chemical cellulose was about 98 wt % and 918, respectively. The Japanese Industrial Standard (JIS) whiteness of the chemical cellulose was about 98%. From the X‐ray diffraction patterns and 13C‐NMR spectrum, it was found that the chemical cellulose obtained here has cellulose Iβ crystal structure. A new regenerated cellulose fiber was prepared from the chemical cellulose by dry–wet spinning using N‐methylmorpholine‐ N‐oxide (NMMO)/water (87/13 wt %) as solvent. The new regenerated cellulose fiber prepared in this study has a higher ratio of wet‐to‐dry strength (<0.97) than commercially regenerated cellulose fibers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1634–1643, 2002.  相似文献   

12.
Here, we designed paper sheets coated with chitosan, bacterial cellulose (nanofibers), and ZnO with boosted antibacterial and mechanical activity. We investigated the compositions, with ZnO exhibiting two different sizes/shapes: (1) rods and (2) irregular sphere-like particles. The proposed processing of bacterial cellulose resulted in the formation of nanofibers. Antimicrobial behavior was tested using E. coli ATCC® 25922™ following the ASTM E2149-13a standard. The mechanical properties of the paper sheets were measured by comparing tearing resistance, tensile strength, and bursting strength according to the ISO 5270 standard. The results showed an increased antibacterial response (assigned to the combination of chitosan and ZnO, independent of its shape and size) and boosted mechanical properties. Therefore, the proposed composition is an interesting multifunctional mixture for coatings in food packaging applications.  相似文献   

13.
首先概述了再生纤维素纤维制造技术的发展历史,总结了以天然纤维素为原料的黏胶纤维、Lyocell纤维和离子液体纤维(Ioncell)及其技术发展现状。重点介绍了这三种再生纤维素纤维的性能、应用领域及市场前景,并比较了其生产工艺,包括纺丝原液的制备、纺丝工艺、溶剂回收等。与黏胶纤维相比,Lyocell 纤维和Ioncell纤维在溶解纤维素及干喷湿纺纺丝方面具有独特的优势。进一步对该类技术的重点和难点,如纺丝原液的连续制备和溶剂的高效回收进行了分析。与Lyocell纤维使用的NMMO溶剂相比,Ioncell纤维使用的离子液体具有离子液体可设计等优点,可根据纤维素原料的不同来源,设计合成对纤维素具有更好的溶解能力而无降解特征且环境友好的离子液体溶剂,同时对温度、金属离子具有很好的稳定性,为发展新一代纤维素绿色制造技术提供了新途径。另外,对Ioncell纤维存在的问题也进行了详细的分析,提出了未来拟开展的重点研究方向和拟解决的关键难题。  相似文献   

14.
A study has been made of the influence of various process parameters on the fibrillation characteristics of Lyocell fibers, which are spun from a solution of cellulose in N-methylmorpholine-N-oxide (NMMO). The parameters were air gap length, temperature, and humidity; line speed; draw ratio; polymer solution cellulose and water contents; and coagulation bath concentration and temperature. Fibrillation was induced in the fibers by an ultrasonic treatment and compared by defining a fibrillation index from optical micrographs. By selecting combinations of the parameters described above, fibrillation can either be increased or decreased without significantly affecting the tensile properties of the fibers. A method for spinning nonfibrillable filaments on a laboratory scale is presented. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Flat hemodialysis membranes were prepared from cellulose/N‐methylmorpholine‐N‐oxide (NMMO) solutions (dope) with different cellulose concentrations (6–8 wt %) by using a phase‐inversion method. The coagulant used was NMMO aqueous solution, of which the NMMO concentration and its temperature were varied in the range of 0 to 50 wt % and 5 to 60°C, respectively. The effects of these preparation conditions on the permeation characteristics, the ultrafiltration rate (UFR) of pure water, and sieving coefficient (SC) of dextran, were investigated. The decrease in cellulose concentration of the dope and the increases in both temperature and NMMO concentration of the coagulant gave a membrane with high UFR. Concerning the SC, the increase of the cellulose concentration and the decreases in both temperature and NMMO concentration gave a good result. Consequently, the membrane having the preferable UFR and SC as a hemodialysis membrane was obtained when the 8 wt % cellulose dope was coagulated in water at 5°C. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2302–2307, 2002  相似文献   

16.
The hydration number (n) of NMMO hydrates has a significant effect on the rheological properties and phase of the cellulose solutions in the hydrates. The physical properties of the lyocell fibers spun from the cellulose solutions in NMMO hydrates with different values of n were investigated relative to the phase of the solution dope. NMMO hydrate with n = 1.1 could not fully dissolve cellulose, resulting in a heterogeneous solution. NMMO hydrate with n = 0.72 produced a mesophase solution that exhibited a good spinnability. When NMMO hydrates with n = 0.72 and 1.0 were used, the lyocell fiber spun from 15 wt % solution dope gave higher tensile strength than that spun from 12 wt % solution dope. NMMO hydrate with n = 1.0 produced a lyocell fiber whose tensile strength was slightly affected by spin–draw ratio but the tensile strength of the lyocell fiber prepared from NMMO hydrate with n = 0.72 was monotonically increased with increasing spin–draw ratio. Further, the latter gave higher birefringence. The lyocell fiber spun from 15 wt % solution in NMMO hydrate with n = 0.72 produced finely fibrillated structures. When treated with sonic wave the lyocell fiber prepared from 15 wt % cellulose (DPw 940) solution in NMMO hydrate with n = 0.72 yielded the most serious fibrillation on the fiber surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 981–989, 2002  相似文献   

17.
以可再生的α-纤维素为基体,粉末发光颗粒作为添加物,利用Lyocell纤维技术制备出发光性能合格的蓄光型自发光纤维。发光Lyocell纤维继承了稀土铝酸盐粉末优异的发光性能,含10%发光材料的纤维其余辉达到了德国的执行标准(DIN67510),10min余辉亮度>20mcd/m2,60 min余辉亮度>2.8 mcd/m2,而其有效余辉(>0.3 mcd/m2)时间大于10h。与无添加的Lyocell纤维相比,其断裂强度下降了17.6%,断裂伸长率上升了25%。  相似文献   

18.
The important properties of cellulosic fibers in the conditioned state are mainly influenced by fine structure. In particular, the development of new methods of spinning regenerated cellulosic fibers made from a cellulose/N-methylmorpholine-N-oxide (NMMO)/H2O system require a better understanding of their fine structures in order to explain their special physical properties. The regenerated cellulosic films were made from cellulose/NMMO/H2O according to the degree of polymerization and solution concentration (wt %) of cellulose and the concentration (wt %) of NMMO in the coagulation bath. The quantification of crystal content was carried out by the resolution of the wide angle X-ray diffraction intensity distribution on the assumption that all diffracted intensities take the form of a symmetrical Gaussian distribution centering at its Bragg angle. The X-ray diffraction patterns resolved into individual integral intensities showed that the polymorphic structure mixed with part cellulose III and II was obtained for only coagulated cellulose films. The degree of crystallinity and apparent crystalline size of regenerated cellulosic films depended on the degree of polymerization, the solution concentration of cellulose, and the concentration of NMMO. The diameter of the microfibril decreased with an increase in the concentration of NMMO. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2681–2690, 1999  相似文献   

19.
离子交换树脂法纯化和回收Lyocell纤维纺丝溶剂NMMO   总被引:4,自引:0,他引:4  
采用阴、阳离子交换树脂处理Lyocell纤维纺丝凝固浴,纯化回收凝固浴中的溶剂NMMO。研究结果表明,阴离子交换树脂脱色效果好,阳离子交换树脂能去除NMMO的分解产物吗啉和甲基吗啉,用回收后的NMMO作为溶剂纺出的纤维性能良好。  相似文献   

20.
Sugarcane bagasse, a cheap cellulosic waste material, was investigated as a raw material for producing lyocell fibers at a reduced cost. In this study, bagasse was dissolved in N‐methylmorpholine‐N‐oxide (NMMO) 0.9 hydrate, and fibers were prepared by the dry jet‐wet spinning method with coagulation in an aqueous NMMO solution. The effects of NMMO in 0 to 50% concentrations on the physical properties of fibers were investigated. The coagulating bath contained water/NMMO (10%) solution produced fiber with the highest drawability and highest physical properties. The cross‐section morphology of these fibers reveals fibrillation due to the high degree of crystallinity and high molecular orientation. In the higher NMMO concentrated baths (30 to 50%), the prepared fibers were hollow inside, which could be useful to make highly absorbent materials. The lyocell fibers prepared from bagasse have a tensile strength of 510 MPa, initial modulus of 30 GPa, and dynamic modulus of approximately 41 GPa. These properties are very comparable with those of commercial lyocell fibers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号