首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report on a newly developed solution process using MoO3 for reducing source and drain (S/D) electrodes in organic thin-film transistor (TFT). By taking advantage of the difference in surface wettability between the gate dielectric layer and the S/D electrodes, the electrode treatment using the MoOx solution was applied to polymer TFT with short channel lengths less than 10 μm. The contact resistance was noticeably reduced at the interface of the S/D electrodes in a polymer TFT using a pBTTT-C16. Furthermore, the field effect mobility for this TFT was enhanced from 0.03 to 0.1 cm2/V s. Most notably, the threshold voltage (Vth) shift under gated bias stress was less than 0.2 V after 105 s, which is comparable to that of conventional poly crystalline Si TFT.  相似文献   

2.
We report the fabrication of bottom-gate thin film transistors (TFTs) at various carrier concentrations of an amorphous InGaZnO (a-IGZO) active layer from ~1016 to ~1019 cm−3, which exceeds the limit of the concentration range for a conventional active layer in a TFT. Using the Schottky TFTs configuration yielded high TFT performance with saturation mobility (μsat), threshold voltage (VTH), and on off current ratio (ION/IOFF) of 16.1 cm2/V s, −1.22 V, and 1.3×108, respectively, at the highest carrier concentration active layer of 1019 cm−3. Other carrier concentrations (<1019 cm−3) of IGZO resulted in a decrease of its work function and increase in activation energy, which changes the source/drain (S/D) contact with the active layer behavior from Schottky to quasi Ohmic, resulting in achieving conventional TFT. Hence, we successfully manipulate the barrier height between the active layer and the S/D contact by changing the carrier concentration of the active layer. Since the performance of this Schottky type TFT yielded favorable results, it is feasible to explore other high carrier concentration ternary and quaternary materials as active layers.  相似文献   

3.
Short-channel, high-mobility organic filed-effect transistors (OFETs) are developed based on single crystals gated with short-channel air gaps. The high hole mobility of 10 cm2/Vs for rubrene, and high electron mobility of 4 cm2/Vs for PDIF-CN2 crystals are demonstrated even with a short channel length of 6 μm. Such performance is due to low contact resistance in these devices estimated to be as low as ~0.5 kΩ cm at gate voltage of ?4 V for rubrene. With the benefit of the short channel length of 4.5 μm in a new device architecture with less parasitic capacitance, the cutoff frequency of the rubrene air–gap device was estimated to be as high as 25 MHz for drain voltage of ?15 V, which is the fastest reported for p-type OFETs, operating in ambient conditions.  相似文献   

4.
As an emerging material, graphene has attracted vast interest in solid-state physics, materials science, nanoelectronics and bioscience. Graphene has zero bandgap with its valence and conduction bands are cone-shaped and meet at the K points of the Brillouin zone. Due to its high intrinsic carrier mobility, large saturation velocity, and high on state current density, graphene is also considered as a promising candidate for high-frequency devices. To improve the reliability of graphene FETs, which include shifting the Dirac point voltage toward zero, increasing the channel mobility and decreasing the source/drain contact resistance, we optimized the device fabrication process. For CVD grown graphene, the film transfer and the device fabrication processes may produce interfacial states between graphene and the substrate and make graphene p or n-type, which shift the fermi level far away from the Dirac point. We have found that after graphene film transfer, an annealing process at 400 °C under N2 ambient will shift Dirac point toward zero gate voltage. Ti/Au, Ni, and Ti/Pd/Au source/drain structures have been studied to minimize the contact resistance. According to the measured data, Ti/Pd/Au structure gives the lowest contact resistance (~500 ohm μm). By controlling the process of graphene growth, transfer and device fabrication, we have achieved graphene FETs with a field effective mobility of 16,000 cm2/V s after subtraction of contact resistance. The contact resistivity was estimated in the range of 1.1 × 10?6 Ω cm2 to 8.8 × 10?6 Ω cm2, which is close to state of the art III–V technology. The maximum transconductance was found to be 280 mS/mm at VD = 0.5 V, which is the highest value among CVD graphene FETs published to date.  相似文献   

5.
《Solid-state electronics》2006,50(7-8):1337-1340
Due to an extra barrier between source and channel, the drivability of Schottky barrier source/drain MOSFETs (SBMOSFETs) is smaller than that of conventional transistors. To reach the drivability comparable to the conventional MOSFET, the Schottky barrier height (SBH) should be lower than a critical value. It is expected that SBH can be effectively reduced by a bi-axially strain on Si. In this letter, p-channel MOSFETs with PtSi Schottky barrier source/drain, HfAlO gate dielectric, HfN/TaN metal gate and strained-Si channel are demonstrated for the first time using a simplified low temperature process. Devices with the channel length of 4 μm have the drain current of 9.5 μA/μm and the transconductance of 14 μS/μm at Vgs  Vth = Vds = −1 V. Compared to the cubic Si counterpart, the drain current and the transconductance are improved up to 2.7 and 3.1 times respectively. The improvement is believed to arising from the reduced barrier height of the PtSi/strained-Si contact and the enhanced hole mobility in the strained-Si channel.  相似文献   

6.
For serving as ideal switching devices in future energy-efficient applications, scaling down the channel lengths of tunnel-field effect transistors (TFETs) is essential to follow the pace of Si-based CMOS technologies. This work elucidates the short-channel mechanisms and the role of the drain in extremely-scaled TFETs. The scalability of TFETs depends strongly on the appropriately low drain concentration, whereas the capability of the drain for scaling relies on a sufficient drain region. The drain with a light concentration of 5 × 1017 cm−3 and a minimum length of 20 nm enables 5 nm TFETs to exhibit favorable on–off switching characteristics. In sub-20 nm TFETs, the total drain and channel lengths must satisfy the minimum criteria of approximately 25 nm to sustain reversely biased drain voltage of 0.7 V. The asymmetric Si1−xGex source heterojunction is combined with the minimum drain design in 5 nm TFETs to separately optimize the source- and drain-side tunnel junctions, generating ideal on-/off-currents and switching characteristics to serve as a promising design approach of sub-5 nm TFETs.  相似文献   

7.
The effects of the physical channel width on the characteristics of organic thin film transistors (OTFTs), made with 6,13-bis(triisopropyl-silylethynyl)-pentacene (TIPS-pentacene) embedded into poly-triarylamine (PTAA, hole conductor within an active channel), have been examined in this paper. The devices are estimated by measuring the drain-source current (IDS) for different contact metals such as Au and Ag, at fixed gate and drain voltages. The results show that the threshold voltage (VT) and IDS increase with increasing channel width. Furthermore, it has been observed that the field effect mobility is dependent on VT, which is influenced by the channel width. The OTFTs, produced using Au and Ag contacts, exhibited the highest values of mobility in the saturation regime, namely 5.44 × 10?2 and 1.33 × 10?2 cm2/Vs, respectively.  相似文献   

8.
In this paper, we report the fundamental properties of NiOx based Resistive RAM (RRAM) devices with Al top electrode and Ni bottom electrode. The NiOx deposition was performed in a relatively high oxygen environment. The initial JV curves in positive and negative bias indicated symmetric behavior in spite of a significant difference in the vacuum work functions of Al and Ni. The capacitance–voltage characterizations indicated NiOx to be a p-type semiconductor with acceptor doping density between 6 × 1018 cm?3 and 5 × 1020 cm?3. Switching behavior was observed after electroforming the devices. The devices failed after multiple switching cycles by switching into a relatively low conductive state. The mechanism of failure was attributed to the formation of Al2O3 due to a slow oxidation of Al electrodes with repeated cycles.  相似文献   

9.
《Solid-state electronics》2006,50(7-8):1238-1243
The dark current density–voltage characteristic of Au/ZnPc/Al device at room temperature has been investigated. Results showed a rectification behavior. At low forward bias, the current density was found to be ohmic, while at high voltages, space charge limited the current mechanism dominated by exponential trapping levels. Junction parameters such as rectification ratio (RR), series resistance (Rs), and shunt resistance (Rsh) were found to be 9.42, 9.72 MΩ, and 0.88 × 103 MΩ, respectively. The current density–voltage characteristics under white light illumination (100 W/m2) gives values of 0.55 V, 3 × 10−3 A/m2, 0.18 and 5.8 × 10−4% for the open circuit voltage, Voc, the short circuit current density (Jsc), the fill factor (FF), and conversion efficiency (η), respectively.  相似文献   

10.
《Solid-state electronics》2006,50(7-8):1212-1215
Iridium-containing and Ni(4 nm)/Au(6 nm) films were evaporated separately on the n+-InGaN–GaN short-period-superlattice (SPS) structure of light-emitting diodes (LEDs). The collective deposition of iridium and other metals as an ohmic contact induces the formation of highly transparent IrO2, which helps to enhance the light output and decrease the series resistance of LEDs. By comparing different metal films used as current spreading contact layer, Ir/Ni film annealed at 500 °C for 20 min in O2 ambient renders devices with lowest turn-on voltage at 20 mA and highest luminous intensity. Moreover, we also analyzed films using atomic force microscopy (AFM) with an emphasis on studying how the surface quality of Ir/Ni and Ni/Au films influences the current spreading and luminosity of LEDs.  相似文献   

11.
A heterojunction device of Au/Fe-TPP/n-Si/Al was assembled by thermally evaporated deposition. The dark current density–voltage characteristics of device were investigated. Results showed a rectification behavior. Measurements of thermo electric power confirm that Fe-TPP thin film behaves as p-type semiconductors. Electronic parameters such as barrier height, diode ideality factor, series resistance, shunt resistance were found to be 0.83 eV, 1.5, 7 × 105 Ω and 2 × 1010 Ω, respectively. The Au/Fe-TPP/n-Si/Al device indicates a photovoltaic behavior with an open circuit voltage Voc of 0.52 V, short circuit current Isc of 2.22 × 10?6 A, fill factor FF of 0.49 and conversion efficiency 1.13% under white light illumination power 50 W/m2.  相似文献   

12.
Bidirectional negative differential resistance (NDR) at room temperature with high peak-to-valley current ratio (PVCR) of ~10 are observed from vertical organic light-emitting transistor indium-tin oxide (ITO)/N,N′-di(naphthalene-1-yl)-N,N′-diphenyl-benzidine) (α-NPD)(60 nm)/Al(30 nm)/α-NPD(60 nm)/tris-(8-hydroxyquinoline) aluminium (Alq3)(50 nm)/Al by narrowing the transport channels for charge carriers with a thick-enough middle Al gate electrode layer to block charge carriers transporting from source electrode to drain electrode. When the transport channel for charge carriers gets large enough, the controllability of gate bias on the drain–source current gets weaker and the device almost works as an organic light-emitting diode only. Therefore, it provides a very simple way to produce NDR device with dominant bidirectional NDR and high PVCR (~10) at room temperature by narrowing transport channels for charge carriers in optoelectronics.  相似文献   

13.
Thin film transistors (TFTs) with bottom gate and staggered electrodes using atomic layer deposited Al2O3 as gate insulator and radio frequency sputtered In–Ga–Zn Oxide (IGZO) as channel layer are fabricated in this work. The performances of IGZO TFTs with different deposition temperature of Al2O3 are investigated and compared. The experiment results show that the Al2O3 deposition temperature play an important role in the field effect mobility, Ion/Ioff ratio, sub-threshold swing and bias stability of the devices. The TFT with a 250 °C Al2O3 gate insulator shows the best performance; specifically, field effect mobility of 6.3 cm2/Vs, threshold voltage of 5.1 V, Ion/Ioff ratio of 4×107, and sub-threshold swing of 0.56 V/dec. The 250 °C Al2O3 insulator based device also shows a substantially smaller threshold voltage shift of 1.5 V after a 10 V gate voltage is stressed for 1 h, while the value for the 200, 300 and 350 °C Al2O3 insulator based devices are 2.3, 2.6, and 1.64 V, respectively.  相似文献   

14.
《Organic Electronics》2014,15(9):1990-1997
The authors report the fabrication of efficient and transparent pentacene field-effect transistors (FETs) using a graded structure of ultra-thin silver (Ag) source and drain (S–D) electrodes. The S–D electrodes were prepared by thermal evaporation with a controlled deposition rate to form Ag layer with a graded structure, leading to a reduced injection barrier and smoothing the contact surface between the electrode and the pentacene channel. The sheet resistance of such Ag electrode was found to be as low as 9 Ω/sq. In addition, a hole-only behavior of device with Ag electrode characterized by current–voltage measurement and conductive atomic-force microscopy shows the injection property of high current flowing as compared with device using Au electrode, resulting in an efficient injection condition existing at the interface of the graded Ag/pentacene. Device characterization indicates the transparent pentacene FET with a graded ultra-thin Ag electrode and organic capping layer of N,N′-di(1-naphthyl)-N,N′-diphenylbenzidine exhibits a high transmission rate of ∼75% in the range of visible light from 400 to 550 nm, a threshold voltage of −6.0 V, an on–off drain current ratio of 8.4 × 105, and a field-effect mobility of 1.71 cm2/V s, thus significantly outperforming pentacene FETs with multilayer oxide electrodes or other transparent thin metal layers.  相似文献   

15.
An organic–inorganic contact was fabricated by forming a thin film of quinoline yellow dye (QY) on a p-Si wafer and evaporating Al metal on the film. The current–voltage (I–V) and capacitance–voltage (C–V) measurements of Al/QY/p-Si heterostructure were applied in dark and room temperature to calculate the characteristic parameters of diode like ideality factor, barrier height and series resistance. Ideality factor and barrier height values were found as 1.23 and 0.87 eV from I–V data, respectively. The series resistance value of the device was determined as 1.8 kΩ by using modified Norde function. The C–V measurements were carried out at different frequencies and it was seen that capacitance value decreased with increasing frequency. Interface state density distribution was calculated by means of I–V measurement. In addition the optical absorption of thin QY film on glass was measured and optical band gap of the film was found as 2.73 eV. Furthermore, I–V measurements of Al/QY/p-Si/Al were taken under illumination between 40 and 100 mW/cm2. It was observed that reverse bias current of the device increased with light intensity. Thus, the heterojunction had a strong response to the light and it can be suitable for electrical and optoelectronic applications like a photodiode.  相似文献   

16.
The electrical analysis of Ni/n-GaP structure has been investigated by means of current–voltage (IV), capacitance–voltage (CV) and capacitance–frequency (Cf) measurements in the temperature range of 120–320 K in dark conditions. The forward bias IV characteristics have been analyzed on the basis of standard thermionic emission (TE) theory and the characteristic parameters of the Schottky contacts (SCs) such as Schottky barrier height (SBH), ideality factor (n) and series resistance (Rs) have been determined from the IV measurements. The experimental values of SBH and n for the device ranged from 1.01 eV and 1.27 (at 320 K) to 0.38 eV and 5.93 (at 120 K) for Ni/n-GaP diode, respectively. The interface states in the semiconductor bandgap and their relaxation time have been determined from the Cf characteristics. The interface state density Nss has ranged from 2.08 × 1015 (eV?1 m?2) at 120 K to 2.7 × 1015 (eV?1 m?2) at 320 K. Css has increased with increasing temperature. The relaxation time has ranged from 4.7 × 10?7 s at 120 K to 5.15 × 10?7 s at 320 K.  相似文献   

17.
The electronic properties of metal–organic semiconductor-inorganic semiconductor diode between InP and poly(3,4-ethylenedioxithiophene)/poly(styrenesulfonate) (PEDOT:PSS) polymeric organic semiconductor film have been investigated via current–voltage and capacitance–voltage methods. The Al/PEDOT:PSS/p-InP contact exhibits a rectification behavior with the barrier height value of 0.98 eV and with the ideality factor value of 2.6 obtained from their forward bias current voltage (IV) characteristics at the room temperature greater than the conventional Al/p-InP (0.83 eV, n = 1.13). This increase in barrier height and ideality factor can be attributed to PEDOT:PSS film formed at Al/p-InP interface.  相似文献   

18.
We report fabrication and electrical characterization of GaAs based metal-interfacial layer-semiconductor (MIS) device with poly[2-methoxy-5-(2/-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV), as an interfacial layer. MEH-PPV raises the barrier height in Al/MEH-PPV/p-GaAs MIS device as high as to 0.87 eV. A Capacitance-Voltage (CV) characteristic exhibits a low hysteresis voltage with an interface states density of 1.69×1011 cm−2 eV−1. Moreover, a high transition frequency (fc) of about 50 kHz was observed in the accumulation mode. The photovoltaic response of Al/MEH-PPV/p-GaAs device was measured under the air masses (AM) 1.0 and 1.5. The open circuit voltage (VOC), short circuit current (ISC), fill factor and the efficiency of the Al/MEH-PPV/p-GaAs device were found to be 1.10 V, 0.52 mA, 0.65, and 5.92%, respectively, under AM 1.0 condition.  相似文献   

19.
We report on the formation of low-resistance and highly transparent indium tin oxide (ITO) ohmic contacts to p-GaN using a Sn–Ag alloy interlayer. Although the as-deposited Sn–Ag(6 nm)/ITO(200 nm) contacts show non-ohmic behaviors, the scheme becomes ohmic with specific contact resistance of 4.72×10−4 Ω cm2 and produce transmittance of ∼91% at wavelength of 460 nm when annealed at 530 °C. Blue light-emitting diodes (LEDs) fabricated with the Sn–Ag/ITO contacts give forward-bias voltage of 3.31 V at injection current of 20 mA. LEDs with the Sn–Ag/ITO contacts show the improvement of the output power by 62% (at 20 mA) compared with LEDs with Ni/Au contacts.  相似文献   

20.
We have demonstrated a low temperature process for a ferroelectric non-volatile random access memory cell based on a one-transistor–one-capacitor (1T1C) structure for application in flexible electronics. The n-channel thin film transistors (TFTs) and ferroelectric capacitors (FeCaps) are fabricated using cadmium sulfide (CdS) as the semiconductor and poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer as the ferroelectric material, respectively. The maximum processing temperature for the TFTs is 100 °C and 120 °C for the FeCaps. The TFT shows excellent access control of the FeCap in the 1T1C memory cell, and the stored polarization signals are undisturbed when the TFT is off. The fabricated 1T1C memory cell was also evaluated in a FRAM circuit. The memory window on the bit line was demonstrated as 2.3 V, based on the 1T1C memory cell with a TFT having dimensions of 80 μm/5 μm (W/L) and a FeCap with an area of 0.2 × 10?3 cm2 using a bit line capacitor of 1 nF pre-charged at 17.2 V. The 1T1C memory cell is fabricated using photolithographic processes, allowing the integration with other circuit components for flexible electronics systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号