首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
宁静  王敖  苏杰  程兴旺 《锻压技术》2022,(12):234-239
采用Gleeble-3800热模拟试验机研究了含有W、Mo等多种碳化物形成元素的新型中合金超高强度钢的热变形行为,变形温度为800~1200℃,应变速率为0.01~10 s^(-1),最大应变量为0.7。热模拟试验得到了试验钢的高温流变应力曲线,其变形抗力随变形温度的降低和应变速率的提高而增加。在变形温度1000℃以上进行热压缩时,试验钢可发生动态再结晶;变形温度的升高会促进晶粒粗化及二次再结晶的发生,而应变速率的提升有利于促进再结晶晶粒的细化和均匀化。根据试验钢的高温流变应力曲线,计算出试验钢的热加工本构方程,并建立了真应变为0.4的热加工图。结合微观组织演变的分析结果,得出试验钢的最佳热加工区域应为:变形温度为1000~1100℃、应变速率为1~10 s^(-1)。  相似文献   

2.
利用Thermecmastor-Z热模拟试验机对P550奥氏体不锈钢进行了高温热压缩试验,研究该钢在850~1 150℃、应变速率0.1~20 s~(-1)条件下的热变形行为。结果表明:P550不锈钢的流变应力随着变形温度的降低和应变速率的提高而增大;随着变形温度的升高和应变速率的增加,高温铁素体的数量减少、尺寸减小,发生动态再结晶的晶粒数量增多;计算获得该钢种的热变形方程为ε=5.5e~(30)[sinh(0.004 3σ)]~(12.38)exp(-794/RT);依据热加工图得出该钢种热加工的流变失稳区为:T=900~1 100℃,ε·=0.1~1 s~(-1),该区域为不均匀塑性变形区,在热加工过程中应予以避免。  相似文献   

3.
利用Gleeble−3500热模拟机的热压缩实验,研究了铸态GH2132合金在变形温度为1173~1423 K和应变速率为0.001~10 s^(−1)条件下的热压缩变形行为和微观组织演化规律,分析该合金在不同变形条件下的热变形激活能Q值、应变速率敏感指数m值、温度敏感指数s值的变化规律,基于动态材料模型(DMM)建立热加工图,结合微观组织确定出最佳热加工参数。结果表明:随着变形温度的升高、应变速率的降低,流变应力减小,GH2132合金为应变速率和温度敏感型材料。提高变形温度、降低应变速率有利于获得均匀分布的等轴晶粒。结合热加工图和高温变形微观组织确定,铸态GH2132合金合理的热变形参数所对应的变形温度和应变速率区间分别为1295~1418 K和3.07~10 s^(−1)。  相似文献   

4.
在Gleeble-1500D热力模拟试验机上,以0.001~1 s^(-1)的应变速率和900~1250℃的温度对铸态ER8钢进行了单轴热压缩试验,得到了流动应力曲线,并基于此,建立了热加工图,详细地分析了温度和应变率对材料热加工性能的影响。结果表明:在变形温度为900~1250℃、应变速率为0.001~1 s^(-1)范围内,铸态ER8钢的流动应力曲线为动态再结晶型曲线,仅当变形温度低于900℃、应变速率高于1 s^(-1)时,流动应力曲线具有明显的动态回复型曲线的特征。结合ER8钢的热加工图分析可知,为了防止高温塑性变形失稳,在锻造时变形温度应大于950℃;当应变为0.20时,应变速率建议小于0.05 s^(-1)。  相似文献   

5.
在应变速率为0.1~10 s~(-1)、变形温度为800~1200℃的变形条件下,利用Gleeble-1500热模拟机对304奥氏体不锈钢进行单向热压缩实验,研究其高温下的流变行为。根据实验数据,304奥氏体不锈钢的流变应力随温度和应变速率变化明显,应变速率越大,变形温度越低,流变应力越大。基于Arrhenius模型推导出材料的热变形本构方程,并算得材料的热变形激活能为486.0 k J·mol~(-1)。建立了真应变为0.7时的热加工图,结合微观组织分析表明:变形温度为1025~1200℃、应变速率为0.1~0.8 s~(-1)时,材料功率耗散系数大于26%,变形过程中发生动态再结晶,此范围为304奥氏体不锈钢的最佳工艺参数。  相似文献   

6.
采用Gleeble3800热模拟试验机对16Cr超级马氏体不锈钢进行高温热压缩试验,测得其高温流变应力曲线。通过双曲正弦模型构建了试验钢的热变形本构方程,获得了该钢的热变形表观激活能Q为533.018 k J/mol。根据材料动态模型绘制试验钢热加工图,结合高温变形后显微组织,确定可行热加工工艺参数:变形温度为925~1025℃,应变速率为0.01~0.1 s~(-1);变形温度为1050~1100℃,应变速率为0.1~10 s~(-1)。此时试验钢组织发生了完全动态再结晶,晶粒明显细化,且对应的能量耗散效率较高。  相似文献   

7.
以20CrNi2Mo低碳钢为研究对象,采用DIL805A/T热模拟试验机在变形温度为900~1050℃、应变速率为0.001~1s^(-1)条件下进行等温单道次轴向热压缩试验,建立了20CrNi2Mo钢高温压缩的最大变形抗力本构方程和热加工图,并观察了热变形组织。结果表明:真应变值为0.1~0.5的热加工图中均存在两个功率耗散峰区,且随着应变量的增加峰区I逐渐向变形温度较高的区域移动,峰区II向应变速率增大的区域移动。热加工图中失稳区域随着应变量的增加先逐渐减小后又逐渐增大,在ε=0.4时,失稳区域最小,此应变量下20CrNi2Mo钢较优的热加工工艺区间为:变形温度940~960℃、应变速率0.001 s^(-1)或温度1025~1050℃、应变速率0.01~0.06 s^(-1)。  相似文献   

8.
《铸造技术》2017,(1):185-188
采用Gleeble3800热模拟机对2205双相不锈钢进行高温热压缩变形实验,分析该材料在变形温度为950~1 100℃、应变速率为0.1~50.0 s~(-1),工程变形量为66.6%不变的条件下的流变应力变化规律。基于动态材料模型建立了2205双相不锈钢的热变形本构方程和热加工图,确定了失稳区。得到2205双相不锈钢热变形激活能Qdef=405.8 k J/mol,结合热加工图确定了最佳的热加工区间为变形温度为1 050~1 100℃,应变速率为0.1~1.0 s~(-1)。为2205双相不锈钢的热加工工艺提供依据。  相似文献   

9.
采用Gleeble-3800热力模拟试验机在温度为1123~1423 K、应变速率为0.001~10 s~(-1)的条件下对2101双相不锈钢进行了热压缩实验,以研究热变形参数对其热加工行为的影响规律。结果表明,相同应变速率下,随温度升高,流变曲线由动态再结晶向动态回复转变。变形速率由0.001 s~(-1)增至0.01和0.1 s~(-1)提高了动态再结晶温度范围,而1和10 s~(-1)的较高应变速率不利于动态再结晶。在应变速率为0.001~0.1s~(-1)、变形温度为1253~1323 K时,峰值应力所对应的应变越小,奥氏体动态再结晶越容易发生,有利于等轴状再结晶组织形成。低应变速率下,变形温度升高使奥氏体再结晶晶粒长大,且Zener-Hollomon参数较大时,动态再结晶效果变差与Mn稳定奥氏体能力较Ni弱有关。基于热变形方程计算得到该不锈钢热变形激活能Q=464.49 k J/mol,略高于2205双相不锈钢,并建立了峰值流变应力本构方程。结合不同变形条件下的应变曲线和显微组织,根据热加工图确定了最佳热加工区域为应变速率在0.001~0.1 s~(-1)、变形温度为1220~1350 K,该区域功率耗散系数处于0.40~0.47的较高值,发生了明显奥氏体动态再结晶。  相似文献   

10.
采用Gleeble-3500热模拟试验机对6061铝合金进行等温热压缩试验,研究变形温度为300~450℃、应变速率为0.01~10s-1、压缩量为60%条件下合金的热变形特性,分析其高温流变应力行为,依据动态材料模型建立热加工图并结合热变形组织分析6061铝合金的热变形机制。结果表明,6061铝合金流变应力随变形温度的升高和应变速率的降低而下降,其高温软化机制以动态回复为主;合金在高应变速率下普遍存在流变失稳,最佳热加工区间变形温度为430~450℃,应变速率为0.01~0.05 s~(-1),该工艺范围内合金出现了部分动态再结晶组织。  相似文献   

11.
《塑性工程学报》2016,(6):137-142
利用Gleeble-3800热模拟试验机研究了一种新型二次硬化超高强度钢M54在850~1 200℃、应变速率为10-2~10s-1条件下的热压缩变形行为,测得了钢的高温流变曲线,并观察变形后的显微组织。实验结果表明,该钢种的流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小,在真应变为0.9,应变速率为10-2~10s-1的条件下,随着变形速率的提高,其发生完全动态再结晶的温度也随之提高。通过计算可知该钢的热变形激活能为489.712kJ·mol~(-1),并建立了试验钢的热变形方程,并绘制了其热加工图,结合高温变形后的显微组织和热加工图,确定了最优热变形工艺参数为变形温度范围1 050~1 100℃,应变速率为0.1~1s~(-1)。  相似文献   

12.
在热模拟试验机上进行了高温压缩试验,研究了GH4698高温合金在不同变形温度(950~1200℃)和应变速率(0. 01~10 s^-1)条件下的流变行为,建立了基于流变曲线的本构方程及以动态材料模型为基础的热加工图。借助扫描电镜和背散射电子衍射技术(EBSD)对变形后试样进行组织分析。结果表明:GH4698高温合金流变应力随着变形温度的降低和应变速率的加快而逐渐增加。在变形温度为1000~1200℃、应变速率为0. 01~0. 05 s^-1的热变形条件下,GH4698高温合金具有较佳的热加工行为。在高、低功率耗散率区域中,随着功率耗散率值的增加,动态再结晶百分数均会增加,再结晶平均晶粒尺寸增大,大角度晶界分数增加。  相似文献   

13.
采用热压缩试验研究了铸态C-276镍基高温合金在950~1250℃和0.01~10 s~(-1)条件下的热变形行为。结果表明:该合金的热变形流变应力随着变形温度的增加及应变速率的降低而减小;当变形条件为1250℃、0.1 s~(-1)时,合金在热压缩过程中发生了动态应变时效。基于流变应力数据建立了合金的热变形本构方程;基于动态材料模型建立了合金在不同应变下的热加工图。通过加工图和微观组织观察优化了合金的热变形参数。合金的表观激活能为497k J/mol铸态C-276合金适宜的热加工区域为1050~1250℃和应变速率0.1~1.0 s~(-1)。  相似文献   

14.
13Cr超级马氏体不锈钢热压缩变形行为与组织演变   总被引:1,自引:0,他引:1       下载免费PDF全文
通过Gleeble-3500热模拟试验机对13Cr超级马氏体不锈钢进行单道次压缩变形试验,系统研究变形温度在950~1150 ℃、应变速率为0.001~10 s-1条件下的热变形行为。利用双曲正弦模型建立了13Cr超级马氏体不锈钢的流变应力本构方程,求得试验钢的热变形激活能为412 kJ/mol,并基于动态材料模型(DMM)理论绘制了材料的热加工图,得出材料的最佳热变形工艺参数窗口为:变形温度1032~1072 ℃,应变速率0.039~0.087 s-1。组织演变结果表明,试验钢在高变形温度和低应变速率的条件下,容易发生动态再结晶。当应变速率一定时(0.01 s-1),变形温度从950 ℃升到1050 ℃,动态再结晶的体积分数从18.7%升高到60.1%,组织的再结晶程度提高,晶粒均匀细小;当变形温度一定时(1050 ℃),随着应变速率的降低,动态再结晶的晶粒长大粗化。  相似文献   

15.
利用Gleeble-3500热模拟机对铸态纯镍N6在压缩量50%下进行了热压缩试验,研究了在应变速率0.01~10.00 s~(-1)、变形温度800~1200℃下,纯镍N6的高温流变行为。通过热模拟试验得到了纯镍N6在不同温度及应变速率下的真应力-真应变曲线,并根据动态材料模型推导出了热加工图。结果表明,纯镍N6对变形温度及应变速率较敏感,其合理热加工温度范围为1000~1150℃,应变速率为0.01~0.32 s~(-1)。  相似文献   

16.
采用Gleeble-1500D热模拟试验机,对Cu-Cr-Zr合金在应变速率为0.001~10 s-1、变形温度为650~850℃的高温变形过程中的变形行为(流变应力和显微组织)进行研究。根据动态材料模型计算并分析该合金的热加工图,并结合变形显微组织观察确定该合金在实验条件下的高温变形机制及加工工艺。结果表明:流变应力随变形温度的升高而减小,随应变速率的提高而增大。从流变应力、应变速率和温度的相关性,得出该合金高温热压缩变形时的热变形激活能(Q)为392.5 kJ/mol,同时利用逐步回归的方法建立该合金的流变应力方程。利用热加工图确定热变形的流变失稳区,并且获得了实验参数范围内热变形过程的最佳工艺参数:温度范围为750~850℃,应变速率范围为0.001~0.1 s-1,并利用热加工图分析了该合金不同区域的高温变性特征以及组织变化。  相似文献   

17.
采用Gleeble-1500热模拟实验机在温度为700~1200℃,应变速率为0.002~5 s~(-1)、最大变形量为55%条件下对特大型支承辊Cr4合金钢进行热压缩试验,研究了该合金的热变形行为及热加工特征,建立了Cr4合金钢在试验条件下的热加工图。结果表明:在其他变形参数恒定时,Cr4合金钢的热变形真应力随应变速率的升高而逐渐变大,随变形温度的提高而急剧降低;在变形温度为750~900℃,应变速率为0.002~0.01 s~(-1),变形温度为750~800℃,应变速率为0.049~2.718 s~(-1)和变形温度为800~1050℃、应变速率为0.1~4.482 s~(-1)的3个区域内易产生流变失稳现象;动态再结晶是触发材料流变软化及稳态流变的主要原因,Cr4合金钢的安全热加工区域的变形温度在950~1150℃之间、应变速率在0.018~0.223 s~(-1)之间。  相似文献   

18.
利用Gleeble-3800热模拟试验机进行了高温压缩试验,研究了新型Ni-Cr-Fe-Nb高温合金在变形温度为880~1030℃、应变速率为0.01~10 s~(-1)的热变形行为。结果表明:峰值流动应力在恒应变速率下随变形温度的升高逐渐下降;在恒变形温度下随应变速率的增加逐渐升高。合金的平均热变形激活能为642.561k J/mol。在变形温度980℃和应变速率10 s~(-1)时,组织仍有大量的粗大变形晶粒,只有很少量的动态再结晶;当应变速率低至0.1s~(-1)时,晶粒内部出现大量动态再结晶。基于DMM构建合金三维热加工图,在变形温度较低且应变速率较高下功率耗散值较小;在低温、中高应变速率变形时,大部分区域有明显的失稳,在应变速率为0.13 s~(-1)时高温区域发生了失稳。结合其微观组织演变规律,确定合金的最佳工艺参数为变形温度940~1000℃、应变速率0.01~0.1s~(-1)。  相似文献   

19.
为了改善6061+Er铝合金的热加工性,通过扫描电镜、透射电镜和Gleeble-3800热模拟试验机,研究了6061+Er铝合金的微观组织,以及当变形温度为375~500℃、应变速率为0.001~10 s^(-1)时的热变形行为。结果表明,锻态6061+Er铝合金中存在微米级初生Al_(3)Er相和起弥散强化效果的纳米级次生AlEr相。建立了6061+Er铝合金热压缩变形过程中的流变应力本构方程,当应变速率为0.001~10 s^(-1)、变形温度为375~500℃时,流变应力计算值与峰值真应力实测值的误差<10%,验证了流变应力本构方程的准确性和可靠性。6061+Er铝合金适宜的热加工范围为:变形温度为375~400℃、应变速率为0.001~0.01 s^(-1)。  相似文献   

20.
利用Gleeble-3500热模拟试验机进行了高温压缩试验,研究了Ni-Cr-Co-Mo合金在变形温度950~1080℃、应变速率0.01~10 s~(-1)下的热变形行为。基于动态材料模型构建了合金热加工图。结果表明:合金在试验条件下具有正应变速率敏感性。合金的平均热变形激活能为566.758 kJ/mol。当应变为0.4时,合金的流变失稳区域较大,说明该合金在大应变时加工难度很大。在变形温度为1000℃时,随着应变速率降低,动态再结晶更加充分。合金最佳工艺参数为变形温度1000~1050℃、应变速率0.01~0.1 s~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号