首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
袁晓玲  陈宇 《电力技术》2013,(10):85-90
在光伏发电系统中,光伏阵列往往会受到局部阴影现象的影响,造成系统的不稳定运行和输出功率的降低,且光伏阵列的P-U特性曲线会出现多峰值,常规最大功率点跟踪(MPPT)算法因其只能单峰寻优而不能完成对最大功率点的跟踪.粒子群优化(PSO)算法则有着良好的多峰全局寻优能力,被广泛应用在局部阴影的最大功率点跟踪中,但是PSO算法有着收敛速度不足和搜索精度低的缺点.为此,提出了基于自适应权重的粒子群优化(APSO)算法,即在运算过程中通过引入非线性动态惯性权重系数,有效地提高整体算法的全局搜索能力和局部改良能力.利用Matlab仿真,在恒定阴影和快速变化阴影2种条件下验证APSO算法的可行性.结果表明,APSO算法能够避免早熟收敛问题,可有效地提高算法的收敛速度和搜索精度.  相似文献   

2.
针对光伏阵列处于局部遮阴情况下其P-U特性曲线呈现出多极值点特性,传统最大功率点跟踪(MPPT)算法由于搜索机制导致难以跳出局部最优准确跟踪到最大功率点问题,提出一种基于改进鲸鱼算法优化支持向量机回归(SVR)的最大功率点跟踪方法.该方法在普通鲸鱼算法的基础上引入对数权重因子与随机差分变异策略,增强了算法在全局搜索与局部开发协调性能、避免陷入局部最优的能力.利用该改进鲸鱼算法对SVR参数寻优,建立光伏阵列最大功率点电压预测模型,并与电导增量法(INC)相结合应用于MPPT控制.Matlab/Simulink仿真结果表明,所提的复合MPPT控制算法在各种局部遮阴及光照突变情况下都能够有效避免陷入局部寻优,迅速准确地跟踪到全局最大功率点(GMPP).  相似文献   

3.
光伏发电在局部遮挡时的功率-电压(P-U)特性曲线呈现多峰状态,导致传统MPPT控制策略易陷入局部最大功率点。提出了一种改进猎人猎物优化算法的MPPT控制策略。该优化算法引入非线性收敛因子,提高了算法全局探索与局部开发的能力。结合黄金正弦算法更新位置,提高了算法的寻优速度。在算法搜索后期利用莱维飞行策略避免算法陷入局部最优。经仿真验证,结果表明,与猎人猎物优化算法、布谷鸟算法和传统扰动观察法相比,所提算法跟踪速度快、收敛精度高且有效抑制了系统功率输出的振荡,能够满足光伏发电局部遮挡MPPT的要求。  相似文献   

4.
贠武超 《电源技术》2023,(10):1351-1354
在局部阴影遮挡条件下,经典最大功率点跟踪(MPPT)算法容易失效,导致无法追踪到最大功率点,针对此问题,提出了一种基于鲸鱼粒子群融合算法的多峰MPPT控制策略。该算法实现了混合算法的优势互补,增强了鲸鱼算法后期收敛效率,且避免了粒子群算法易停滞于局部极值的缺陷,提高了鲸鱼粒子群融合算法的收敛精度和寻优效率。在MATLAB/Simulink环境中建立光伏阵列仿真模型,仿真结果表明:该算法追踪过程中震荡幅度减小,能够快速准确地搜索到最大功率点。  相似文献   

5.
大型光伏水泵系统在特殊工作环境下光伏阵列时常处于局部阴影状态,其输出具有高度非线性和多个局部功率峰值,此时传统最大功率点跟踪(MPPT)方法不再适用。对此提出将粒子群优化(PSO)算法引入光伏阵列MPPT控制,根据阵列输出特性给出了初始粒子定位、算法参数调整和算法重启策略方法,实现了部分遮蔽情况下光伏水泵系统最大功率点(MPP)的稳定跟踪,避免了系统工作点在MPP附近振荡,同时还具有全局搜索功能,进一步提高光伏水泵系统的工作效率。最后实验结果表明了该算法的稳定性和有效性。  相似文献   

6.
结合量子粒子群算法的光伏多峰最大功率点跟踪改进方法   总被引:1,自引:0,他引:1  
光伏阵列在局部阴影时的P-U曲线呈现多峰特性,需要设计光伏多峰最大功率点跟踪方法,以实现光伏发电最大功率输出,提高光伏发电效率。相比粒子群优化算法,量子粒子群优化算法具有收敛速度更快和全局收敛性等优势。提出了一种基于量子粒子群优化算法的光伏多峰最大功率点跟踪改进方法。该方法采用量子粒子群优化算法实现最大功率点的全局搜索;根据光伏阵列在局部阴影时P-U曲线上功率极值点的分布特点初始化种群中的粒子总数及其电压;并根据量子粒子群优化算法收敛时粒子自身最优位置的特点,提出了更适合光伏多峰最大功率点跟踪的收敛判据。仿真测试表明,提出的改进方法能够快速有效地实现光伏多峰最大功率点跟踪,收敛速度更快,避免了不收敛的问题,且具有应对光照情况变化的能力,提高了局部阴影时光伏发电的效率。  相似文献   

7.
张鹏宇  赵晋斌  潘超  毛玲  王一鸣 《电源技术》2023,(10):1346-1350
针对传统最大功率跟踪(MPPT)算法在跟踪局部阴影时的光伏最大功率失效问题,以及目前元启发式MPPT算法中较多初始种群数导致算法计算负担过大,寻优时间过长的现象,提出了一种新的蝴蝶算法(BOA)-爬山法(HC)混合MPPT控制算法。该算法利用BOA进行全局寻优,在搜索至全局最大功率附近时采用HC进行后续搜索。利用传统MPPT方法的快速收敛性来提高元启发式算法的搜索速度,减小BOA的搜索空间,加快整体算法的全局跟踪速度。利用MATLAB/Simulink仿真软件搭建了局部阴影下的光伏发电系统,并在相同种群数目下对粒子群(PSO)和BOA算法进行测试对比,验证了所提算法的有效性。  相似文献   

8.
为解决爬山搜索法等传统光伏发电最大功率跟踪(MPPT)控制的动态响应速度和稳定性难以兼顾,粒子群优化模糊控制等智能MPPT控制复杂且计算量大的不足,引入光伏电池的工程数学模型,采用最大功率传输定理分析MPPT的本质。针对光伏板上光照强度、温度及负载阻抗可测量,爬山搜索法无需知道光伏板所处环境状态,提出了利用外界光照、温度来给定最大功率参考值,实现输出功率的初步最大跟踪,当输出功率接近理论最大输出功率时,利用变步长爬山搜索法完成最大输出功率准确跟踪的改进型MPPT算法。仿真结果表明,所提的算法能快速完成MPPT功能,具有良好的动态响应能力和跟踪稳定性。  相似文献   

9.
李大华  聂前  田禾  付文成  杜洋 《电源技术》2022,46(5):556-559
针对光伏阵列处于阴影状况下功率电压(P-U)特性曲线的非线性、多极值特点以及传统最大功率跟踪算法无法取得良好效果的问题,提出了一种改进海鸥优化算法的最大功率跟踪方法。该方法对海鸥优化算法的附加控制因子进行改进,提出非线性搜索控制应用到最大功率点跟踪(MPPT)中;并将混沌序列引入算法,增加种群位置的多样性,以此来克服过早收敛的缺陷,增强算法在全局搜索与跳出局部搜索的能力。建立仿真模型,在不同环境下与SOA、PSO进行对比,结果表明该算法可实现复杂环境条件下的最大功率跟踪,并具备较快的响应速度和稳定的寻优效果。  相似文献   

10.
为了充分利用光伏阵列转换能量,提高光伏阵列的发电效率,在分析光伏阵列的伏安特性及最大功率点跟踪(MPPT)原理的基础上,提出了一种基于粒子群算法优化BP神经网络(PSO-BPNN)的建模方法,并用这种改进的神经网络构建了光伏阵列的动态模型.通过PSO-BPNN模型拟合光伏阵列输出功率与输出电压的非线性关系,实现了对光伏阵列的最大功率点跟踪.Matlab/Simulink仿真及在线测试结果表明:基于PSO-BPNN估计的光伏阵列MPPT控制系统能快速、精确地跟踪光伏阵列的最大功率点,改善了BP神经网络收敛速度慢,易陷入局部极值,建模精度不高的缺点,提高了系统的稳定性和能量转换效率,是研究光伏发电这个复杂非线性系统的一个可行办法.  相似文献   

11.
局部阴影条件下,光伏阵列的功率特性曲线会出现多个峰值,传统的MPPT跟踪算法容易陷入局部极值点,无法准确地跟踪到最大功率点。粒子群算法具有很强的全局搜索能力,可以有效解决多峰寻优问题,但是普通粒子群算法容易出现收敛速度慢、早熟现象。提出一种改进的粒子群遗传(IPSO-GA)算法,该算法的惯性权重与学习因子随着迭代次数不断改变,可以同时兼顾算法的局部搜索与全局寻优能力,并且引进遗传算法的交叉、变异操作以增加种群多样性。仿真结果表明,改进算法在多峰最大功率跟踪过程中,具有良好的跟踪速度与寻优精度。  相似文献   

12.
在局部遮荫下的多峰值P-U曲线寻优中,最大功率点跟踪(MPPT)容易陷入局部最优,跟踪速度和精度都无法兼顾,跟踪振荡大,造成光伏能量损失。提出了一种基于交错Boost和声搜索-扰动观察法混合算法(HS-P&O)的光伏MPPT控制方法,在和声搜索算法(HS)全局搜索过程中引入音调随机收敛因子ω,在局部搜索中与P&O算法进行协同控制;利用交错Boost的导通特性减小在发电过程中的纹波,减小输出振荡,加入开关电感提高电压增益,使算法能够更快到达最大功率点附近进行搜索。在MATLAB/Simulink中搭建了仿真模型,实验对比表明,所提控制方法响应速度快,光照突变前后均能迅速跟踪到全局最大功率点,在收敛速度和跟踪精度上都有所提高,稳定性良好。  相似文献   

13.
针对光伏电池的最大功率点跟踪(MPPT)影响着光伏系统的发电效率,对光伏阵列的功率输出特性曲线进行了建模仿真分析,根据MPPT的目标是保持光伏阵列输出电压一直保持在最大功率点处,重点分析在光伏阵列出现局部阴影情况时的,光伏阵列的P-V输出特性为多峰曲线情况下,提出了一种基于改进的模拟退火粒子群算法的最大功率点跟踪控制方法,将模拟退火算法思想融入到粒子群算法中,改善粒子的探索能力,提升了最大功率点跟踪算法的收敛速度和精确性。  相似文献   

14.
近年来,光伏发电因太阳能绿色无污染等原因被高度关注,光伏发电的核心技术问题是如何提高光伏发电效率,即提高光伏发电系统的"最大功率点"跟踪速度,进而提升平均发电功率。根据光伏电池原理提出MPPT控制方法,根据智能仿生优化算法蚁群算法,提出一种简化的蚁群优化算法,并将简化蚁群算法应用在MPPT控制中,通过不断迭代使占空比更新,从而找到最大功率点并稳定跟踪。并通过数值仿真实验,验证所提出的优化算法在光伏MPPT控制中具有较快的收敛速度,同时与传统扰动观测法相比具有较高的精准度和较小的搜索振荡;在搭建的光伏发电系统真实实验平台上也验证了简化蚁群算法的可行性。  相似文献   

15.
薛飞  马鑫  田蓓  吴慧 《中国电力》2022,55(2):131-137
光伏阵列的P-U特性曲线在局部遮蔽条件下呈现多峰现象,针对传统最大功率点跟踪方法易陷入局部极值、群智能算法跟随速度慢的问题,提出一种基于蜻蜓算法和扰动观察法的改进最大功率点跟踪算法.该算法通过优化算法角色,引入Lévy飞行模式加快算法的收敛速度并提高全局搜索能力;结合扰动观察法,提出种群密度的概念,制定最优局部搜索策略...  相似文献   

16.
在光伏系统中,最大功率点跟踪(MPPT)是十分重要的环节,而MPPT算法对MPPT输出的效率具有决定性作用。通过对光伏电池板方阵和Boost电路的研究建立起MATLAB仿真模型,然后分析了快速退火算法的各个环节优化公式,并将其引入遗传算法中,用其处理种群个体。使遗传算法克服了过早收敛的问题,并加快了算法的搜索速度,最终实现MPPT功能。  相似文献   

17.
局部阴影条件下,光伏发电系统中P-U曲线会呈现多峰现象,传统的最大功率点跟踪(Maximum Power Point Tracking, MPPT)算法易失效,粒子群(PSO)算法适用于复杂多极值系统的寻优,因而在多峰全局MPPT中得到应用。针对寻优过程中传统PSO算法搜索精度低以及易出现早熟现象的缺点,本文提出了自适应惯性权重粒子群(APSO)算法,在PSO算法中引入非线性惯性权重,以提高多峰全局寻优的精度与速度。最后利用MATLAB/Simulink对系统进行仿真,仿真结果表明:在均匀光照和可变阴影条件下,APSO算法能有效提高系统寻优的收敛速度与精度。  相似文献   

18.
李季  阎鑫  孙文涛  徐晓宁  邵磊 《电源技术》2022,46(2):186-189
针对光伏阵列在环境突变情况下尤其是局部阴影下的多峰值现象,提出一种基于反向传播(BP)神经网络与改进粒子群的最大功率点跟踪(MPPT)算法。该算法利用BP神经网络近似定位最大功率点,并利用对粒子群算法中的惯性权重值进行非线性动态优化后的改进粒子群精确定位最大功率点。仿真结果表明,复合算法可以更好地跟踪最大功率点,有效避免前期易陷入局部极值的问题,提高了精度,减小了功率振荡。  相似文献   

19.
在光伏阵列受到局部阴影遮挡条件下,针对光伏阵列的功率-电压(P-V)输出特性曲线在多峰值状态下的最大功率点跟踪(maximum power point tracking, MPPT)问题,通过对粒子群(particle swarm optimization, PSO)算法的改进,提出了一种基于新型粒子群(novel particle swarm optimization,NPSO)算法的MPPT方法(以下简称NPSO_MPPT算法)。NPSO算法通过将种群粒子分为收敛粒子和自由粒子两类,提高了原始PSO算法的全局搜索能力。在Simulink环境下,分别对P&O、基于PSO算法的MPPT方法(以下简称PSO_MPPT算法)和NPSO_MPPT算法进行仿真测试,仿真结果表明,NPSO_MPPT算法相比较现有的P&O和PSO_MPPT算法,具有发电效率高和不易陷入局部功率极大值等优点。  相似文献   

20.
针对光伏发电系统在局部荫蔽下传统最大功率点追踪方法极易陷入局部最优而导致功率震荡范围较大等问题,提出一种基于改进白骨顶鸡算法的光伏MPPT方法。该算法在传统白骨顶鸡算法的基础上,将Logistic-Sine-Cosine混沌映射因子引入种群跟随者的链式移动中,从而使链式移动变为混沌移动,让算法具备跳出局部最优解的能力;对每次寻优结束后的当前最优位置进行柯西变异,对比变异前后择优更新替代,增加算法的全局搜索能力。在四种光照模式下,将ICOOT与另外三种算法的MPPT进行仿真分析。结果显示,所提改进算法的追踪速度为0.14 s,1.13 s,0.13 s,1.07 s,系统稳定率为99.43%,99.34%,98.73%,98.80%。综合来看,ICOOT在用于光伏发电局部隐蔽MPPT时能有效解决传统算法易于陷入局部最大功率点而导致寻优速度慢、功率震荡大的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号