首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Poly (3-hexylthiophene-2, 5-diyl) (P3HT) thin films were prepared using spin coating technique and the effect of annealing on the bias switching for memory applications were studied. Due to annealing, the threshold voltage for switching was reduced considerably. In bias switching, threshold voltage was least for the sample annealed at 100 °C. Addition of phenyl-C61-butyric acid-methyl-ester (PCBM) into P3HT also reduced the threshold voltage. It was also found that the devices with gold (Au) top electrode switched at a lower threshold voltage compared to their aluminium (Al) counterparts.  相似文献   

2.
Femto-second laser irradiation on P3HT:PCBM solutions have been demonstrated to have a significant impact on the conformational structures and photovoltaic performance of the resultant thin films. The crystallinity and edge-on/face-on conformations of P3HT and the aggregation of PCBM can be manipulated by controlling the wavelength (400–800 nm) and illumination duration (1–3 h) of the lasers. Grazing incidence wide- and small-angle X-ray scattering (GIWAXS and GISAXS) have been simultaneously utilized to characterize the nanostructures of the P3HT:PCBM blend films spin-cast from pristine and laser-irradiated solutions. The results show that the crystallinity, π-π* stacking and face-on conformations of P3HT can be enhanced as a result of the laser irradiation at 500 nm for 3 h. Furthermore, the diffusion and aggregation of PCBM molecules are suppressed by the photo-induced dimerization, as evidenced by the Raman spectra of the films cast from laser-irradiated PCBM solutions. The time-resolved fluorescence decay profiles show the charge transfer efficiency is improved, which may correlate to the supramolecular ordering of the polythiophene chains and the optimized phase separation in P3HT:PCBM composite. In the P3HT:PCBM active layer of the organic solar cells, more efficient charge transport and fine interpenetrating networks can be achieved due to the improved conformational microstructures. Consequently, the short-circuit current densities and power conversion efficiencies can be enhanced in organic solar cells based on the laser-irradiation processed P3HT:PCBM solutions.  相似文献   

3.
We report on the fabrication of Indium Tin Oxide (ITO)-free inverted organic bulk heterojunction (BHJ) photodetectors of poly(3-hexylthiophene) (P3HT): 1-(3-methoxycarbonyl)-propyl-1-1-phenyl-(6,6) C61 (PCBM). The final inverted device structure is Cr/Al/Cr/P3HT:PCBM/poly-3,4-ethylenedioxythiophene:poly-styrenesulfonate (PEDOT:PSS)/Ag (Zimmermann et al., 2009) [1]. The device is top-absorbing with the light entering through the hole contact grid. We have fabricated standard devices with structure ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al in order to carry out a comparison study. Inverted photodetectors show slightly higher quantum efficiency and responsivity compared to standard devices. Frequency responses at different bias voltages were measured showing a maximum −3 dB cut-off frequency of 780 kHz and 700 kHz at −3 V for the standard and inverted structures respectively. Parameters extracted from the fit of a circuital model to the impedance spectroscopy measurements were used to estimate the photodiode cut-off frequency as function of bias.  相似文献   

4.
An organic photovoltaic (OPV) device has been used in conjunction with a flexible inorganic phosphor to produce a radiation tolerant, efficient and linear detector for 6 MV X-rays. The OPVs were based on a blend of poly(3-hexylthiophene-2,5-diyl) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM). We show that the devices have a sensitivity an order of magnitude higher than a commercial silicon detector used as a reference. Exposure to 360 Grays of radiation resulted in a small (2%) degradation in performance demonstrating that these detectors have the potential to be used as flexible, real-time, in vivo dosimeters for oncology treatments.  相似文献   

5.
    
Conducting p-type polymer of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been widely used for organic optoelectronics, particularly as a hole transport layer for organic solar cells. While the aged PEDOT:PSS dispersion impacts device performance, the aging of PEDOT:PSS dispersion have not been well investigated. Moreover, the recovery process of aged (two-year-old) PEDOT:PSS dispersion has not been demonstrated yet. Herein, it is found that aqueous PEDOT:PSS dispersion undergoes extensive phase separation during the aging process, resulting in both nanoscale and macroscale hydrophobic PEDOT-rich agglomerates. When the aged PEDOT:PSS thin film is integrated into P3HT:PCBM organic solar cells, the PEDOT-rich agglomerates trap the photogenerated holes at the PEDOT:PSS/P3HT interface, resulting in poor extraction efficiency in organic solar cells. To recover a hole transport functionality from aged PEDOT:PSS, three different solvents such as isopropyl alcohol (C3H7OH), ethanol (C2H5OH) and methanol (CH3OH) are investigated. Among them, it is found that isopropyl alcohol (IPA) yielded very uniform PEDOT:PSS thin film layer. This is because hydrophobic functional groups of IPA solvent facilitated the preferential solvation of phase separated hydrophobic PEDOT-rich agglomerates. However, when non-optimal concentration of IPA solvents was added into the aged PEDOT:PSS dispersion, the size of PEDOT-rich agglomerates was adversely enlarged. When organic solar cells were fabricated using more than a two-year-old PEDOT:PSS that was treated with IPA solvent, the resulting device performance of organic solar cells was fully recovered and became comparable or better than that of organic solar cells fabricated with fresh PEDOT:PSS.  相似文献   

6.
    
《Microelectronics Reliability》2014,54(12):2766-2774
In this study, the gold/poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester/n-type silicon (Au/P3HT:PCBM/n-Si) metal–polymer–semiconductor (MPS) Schottky barrier diodes (SBDs) were investigated in terms of the effects of PCBM concentration on the electrical parameters. The forward and reverse bias current–voltage (IV) characteristics of the Au/P3HT:PCBM/n-Si MPS SBDs fabricated by using the different P3HT:PCBM mass ratios were studied in the dark, at room temperature. The main electrical parameters, such as ideality factor (n), barrier height (ΦB0), series resistance (Rs), shunt resistance (Rsh), and density of interface states (Nss) were determined from IV characteristics for the different P3HT:PCBM mass ratios (2:1, 6:1 and 10:1) used diodes. The values of n, Rs, ΦB0, and Nss were reduced, while the carrier mobility and current were increased, by increasing the PCBM concentration in the P3HT:PCBM organic blend layer. The ideal values of electrical parameters were obtained for 2:1 P3HT:PCBM mass ratio used diode. This shows that the electrical properties of MPS diodes strongly depend on the PCBM concentration of the P3HT:PCBM organic layer. Moreover, increasing the PCBM concentration in P3HT:PCBM organic blend layer improves the quality of the Au/P3HT:PCBM/n-Si (MPS) SBDs which enables the fabrication of high-quality electronic and optoelectronic devices.  相似文献   

7.
A combination of fast scanning chip calorimetry and X-ray ptychography is explored to study the effects of thermal annealing on the active layer of bulk heterojunction organic photovoltaics. The well-known P3HT/PC61BM 1:1 system is investigated as a test case. By using a custom chip calorimetry setup, it is possible to give a thermal treatment at 127 °C (400 K) to P3HT/PC61BM 1:1 thin layers, using a heating and cooling rate of 30000 K s−1, after which the resulting morphology is investigated with X-ray ptychography. Applying only heating and cooling, without isothermal annealing, yields a featureless morphology. This corresponds well with thermal data which indicate a mixed amorphous phase only. For increasing isothermal annealing times, a well-defined morphology appears with increasing domain size, corresponding to the formation of an endothermal melting trajectory. This melting trajectory is expected to consist of both eutectic melting and melting of coarsened crystals. In contrast to chip calorimetry results, large domain sizes are obtained for heating and cooling without isothermal annealing at a conventional rate of 20 K min−1. This initial morphology then develops further with increased isothermal annealing. The combination of chip calorimetry and ptychography allows separating the effects of each single thermal step on morphology development.  相似文献   

8.
    
The effects of metal chlorides such as LiCl, NaCl, CdCl2 and CuCl2 on optical transmittance, electrical conductivity as well as morphology of PEDOT:PSS films have been investigated. Transmittance spectra of spun PEDOT:PSS layers were improved by more than 6% to a maximum of 94% in LiCl doped PEDOT:PSS film. The surface of the PEDOT:PSS films has exhibited higher roughness associated with an increase in the electrical conductivity after doping with metal salts. The improvement in the physical properties of PEDOT:PSS as the hole transport layer proved to be key factors towards enhancing the P3HT:PCBM bulk heterojunction (BHJ) solar cells. These improvements include significantly improved power conversion efficiency with values as high as 6.82% associated with high fill factor (61%) and larger short circuit current density (∼18 mA cm−2).  相似文献   

9.
Semiconducting conjugated polymers have drawn a great deal of attention over the past decade due to their solution processability and potential use in roll to roll fabrication of organic solar cells. Here, we report the effect of solvent vapor pressure on poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) blade coated inverted solar cells using ZnO as the electron transporting layer and MoO3 as the hole transporting layer. The resultant morphology and device performance are investigated for devices processed from solvents with varied vapor pressure and a mixed solvent. We report that the use of a mixed solvent system is advantageous for controlling the initial vapor pressure of the processing solution, thereby controlling the phase separated morphology between P3HT and PCBM which impacts ultimate solar cell performance.  相似文献   

10.
《Organic Electronics》2014,15(9):1958-1964
Charge injection processes in polymer: fullerene composite diodes have been investigated for blend films of poly(3-hexylthiophene) (P3HT) and methanofullerene (PCBM) using spectroscopic techniques combined with bias application, termed a device modulation (DM) spectroscopic technique. The voltage dependence of DM signals under the dark condition demonstrates that injection of mobile carriers into P3HT in the blend diode occurs at much lower voltage than that for a P3HT diode, suggesting that the bulk-hetero junction structure of the blend film induces inhomogeneity in the energy level and partly lowers the barrier for carrier injection. Recombination processes of injected P3HT carriers for the blend device in the dark are analyzed by the frequency dependence of DM signals and found to be dominated by bimolecular recombination processes. The DM measurements under illumination demonstrate that, although charge injection under illumination occurs to the same extent as that in the dark condition, some photo-generated charge-transfer states at the interface of P3HT and PCBM are lost on a slow timescale by recombination with injected carriers.  相似文献   

11.
The kinetics and thermodynamics of PCBM phase segregation and aggregation in P3HT:PCBM blends has been studied. We develop a thermodynamic model for PCBM phase segregation in P3HT:PCBM blends which explains the formation of nanoscale crystallites which subsequently diffuse and coalesce into larger PCBM aggregates. We show that the formation of nanoscale crystallites during the film making process prevents spinodal decomposition of the P3HT:PCBM blends even at PCBM weight fractions above the spinodal decomposition boundary for the system. Finally, we demonstrate that the observed aggregate morphology can be understood in terms of a kinetic model based on the diffusional flux lines of PCBM crystallite which, in turn, govern the evolution of the macroscopic growth front.  相似文献   

12.
    
The paper reviews recent advances in characterisation of charge carrier transport in organic semiconductor layers by time-of-flight photocurrent measurements, with the emphasis on the measurements of the samples with co-planar electrodes. These samples comprised an organic semiconductor layer whose thickness is on the order of a μm or less, and thus mimic the structures of organic thin film transistors. In the review we emphasise the importance of considering spatial variation of electric field in these, essentially two-dimensional structures, in interpretation of photocurrent transients. We review the experimental details of this type of measurements and give examples that demonstrate exceptional sensitivity of the method to minute concentration of electrically active defects in the organic semiconductors as well as the capability of probing charge transport along the channels of different mobility that reside in the same sample.  相似文献   

13.
In this study the effects of some important processing and post-processing treatments on the performance of poly(3-hexylthiophene-2,5-diyl) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester ([60]PCBM) solar cells were investigated. These parameters included the active layer film formation period, thermal annealing, electrical treatment, cathode work function modification, and exciton blocking layer type and thickness. Polymer bulk heterojunction solar cells having a glass/indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/P3HT:PCBM/(Ca or LiF)/Al structure were fabricated. The morphology of the active layer was investigated using atomic force microscopy. The results showed that the morphology state of the active layer exactly after spin coating process was very important parameter, which could dictate different responses of solar cells to a certain treatment. Using solvent additives to prolong the film formation period and storing in small dish could reach the morphology of the active layer near its best state in which there was no need to apply common post-treatment processes. A thickness at about 20 nm was required for Ca layer to effectively act as exciton blocking layer while LiF with 1 nm thickness worked better.  相似文献   

14.
    
《Organic Electronics》2014,15(9):2059-2067
Polymer solar cells (PSCs) are of great interest in the past decade owing to their potentially low-cost in the manufacturing by the solution-based roll to roll method. In this paper, a novel inverted device structure was introduced by inserting a high conductive PEDOT:PSS (hcPEDOT:PSS) layer between the Au nanoparticles (NPs)-embedded hole transport layer (PEDOT:PSS) and the top electrode layer. Power conversion efficiency (PCE) initially reached up to 4.51%, illustrating ∼10% higher compared with the device similarly enhanced by Au NPs plasmonics where only one PEDOT:PSS layer with the embedded Au NPs was used in single bulk heterojunction inverted PSCs based on the poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methylester (P3HT:PCBM). The PCE was further improved from 4.51% to 5.01% by adding the high-boiling point solvent of 1,8-diiodooctane (DD) into the active layer, presenting ∼20% enhancement in PCE through dual effects of introducing the high boiling point solvent and the high conductive PEDOT:PSS layer. Morphologies of the active layers were characterised by SEM and AFM separately in the paper.  相似文献   

15.
    
We here present a way of preparing the polymer:fullerene BHJ using dual feed method which can lead to formation of pure phases. In this report, we present results of our initial experiments in this direction. The effect of process parameters on the thickness and surface roughness of the active layer has been discussed. The structural and optical properties have been studied using the optical microscope, UV-visible spectroscopy and photoluminescence spectroscopy. Significant PL quenching indicates efficient charge separation in the BHJ formed using this technique. We have also compared the BHJ thin films prepared with this dual feed ultrasonic technique with the single feed spray method. The BHJ formed using this technique has been used as an active layer in OSC.  相似文献   

16.
In this study, a gold/poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester/n-type silicon (Au/P3HT:PCBM/n-Si) metal-polymer-semiconductor (MPS) Schottky barrier diode (SBD) was fabricated. To accomplish this, a spin-coating system and a thermal evaporation were used for preparation of a P3HT/PCBM layer system and for deposition of metal contacts, respectively. The forward- and reverse-bias current–voltage (IV) characteristics of the MPS SBD at room temperature were studied to investigate its main electrical parameters such as ideality factor (n), barrier height (ΦB), series resistance (Rs), shunt resistance (Rsh), and density of interface states (Nss). The IV characteristics have nonlinear behavior due to the effect of Rs, resulting in an n value (3.09) larger than unity. Additionally, it was found that n, ΦB, Rs, Rsh, and Nss have strong correlation with the applied bias. All results suggest that the P3HT/PCBM interfacial organic layer affects the Au/P3HT:PCBM/n-Si MPS SBD, and that Rs and Nss are the main electrical parameters that affect the Au/P3HT:PCBM/n-Si MPS SBD. Furthermore, a lower Nss compared with that of other types of MPS SBDs in the literature was achieved by using the P3HT/PCBM layer. This lowering shows that high-quality electronic and optoelectronic devices may be fabricated by using the Au/P3HT:PCBM/n-Si MPS SBD.  相似文献   

17.
    
Thin films based on the tolyl‐substituted oligothiophenes 5,5′′‐bis(4‐methylphenyl)‐2,2′:5′,2′′‐terthiophene ( 1 ), 5,5′′′‐bis(4‐methylphenyl)‐2,2′:5′,2′′:5′′,2′′′‐quaterthiophene ( 2 ) and 5,5′′′′‐bis(4‐methylphenyl)‐2,2′:5′,2′′:5′′,2′′′:5′′′,2′′′′‐quinqethiophene ( 3 ) exhibit hole‐transport behavior in a thin‐film transistor (TFT) configuration, with reasonable mobilities and high current on/off (Ion/Ioff) ratios. Powder X‐ray diffraction (PXRD) reveals that these films, grown by vacuum deposition onto the thermally grown silicon oxide surface of a TFT, are highly crystalline, a characteristic that can be attributed to the general tendency of phenyl groups to promote crystallinity. Atomic force microscopy (AFM) reveals that the films grow layer by layer to form large domains, with some basal domain areas approaching 1000 μm2. The PXRD and AFM data are consistent with an “end‐on” orientation of the molecules on the oxide substrate. Variable‐temperature current–voltage (IV) measurements identified the activation regime for hole transport and revealed shallow level traps in thin films of 1 and 2 , and both shallow and deep level traps in thin films of 3 . The activation energies for thin films of 1 , 2 , and 3 were similar, with values of Ea = 121, 100, and 109 meV, respectively. The corresponding trap densities were Ntrap/Nv = 0.012, 0.023, and 0.094, where Ntrap is the number of trap states and Nv is the number of conduction states. The hole mobilities for the three compounds were similar (μ ? 0.03 cm2 V–1 s–1), and the Ion/Ioff ratios were comparable with the highest values reported for organic TFTs, with films of 2 approaching Ion/Ioff = 109 at room temperature.  相似文献   

18.
Aluminum doped zinc oxide (AZO) was used to be the cathode instead of indium-tin-oxide (ITO) in the poly (3-hexylthiophene-2,5-diyl):[6,6]-phenyl C61 butyric acid methyl ester (P3HT:PCBM) based bulk heterojunction inverted organic solar cells (IOSCs). For the AZO only IOSC, the device shows a poor power conversion efficiency (PCE) of 1.34% and a light soaking issue related to the energy barrier at the AZO/P3HT:PCBM interface. When a 5 nm Ca modifying layer is inserted between AZO and P3HT:PCBM, the obtained AZO/Ca (5 nm) IOSC shows an increased PCE from 1.74% to 2.69% after 15 min illumination. It is thought that the increased photoconductivity of AZO/Ca (5 nm) film upon illumination and the enhanced electron transport across the AZO/Ca interface may be responsible for the light soaking issue. When an ultrathin Ca modifying layer of 1 nm is employed, a further improved PCE of 3.17% is obtained, and remarkably, no light soaking issue is observed in this case. However, this unexpected issue appears after the un-encapsulated AZO/Ca (1 nm) IOSC has been stored in air for several days, which may be due to the energy loss in the electron transport across the interface between partly oxidized Ca and AZO layers induced by the oxidization of Ca. Furthermore, the AZO/Ca (1 nm) IOSC has a comparable PCE to the referenced ITO/Ca (1 nm) IOSC and presents a better air-stability. It is thus concluded that the AZO cathode is a promising alternative of ITO to fabricate the high efficient and long-lifetime IOSCs.  相似文献   

19.
    
We present a time-resolved Kelvin Probe Force Microscopy (KPFM) technique that can record carrier motion on the scale of milliseconds, appropriate for polycrystalline materials like organic semiconductors. The organic semiconductors are studied in a transistor geometry to which we apply a step voltage to the back-gate. We record the change in potential at a specific location and observe the times associated with filling and emptying majority carrier traps, observed in hole majority carrier poly(3-hexylthiophene-2,5-diyl) (P3HT) and a perylene diimide electron majority carrier, PDI-CN2. We see signs of bias stress with repeated measurements in P3HT.  相似文献   

20.
    
In this study, we report high performance organic solar cells with spray coated hole‐transport and active layers. With optimized ink formulations we are able to deposit films with controlled thickness and very low surface roughness (<10 nm). Specifically we deposit smooth and uniform 40 nm thick films of poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as well as films composed of a mixture of poly(3‐hexyl thiophene) (P3HT) and the C60‐derivative (6,6)‐phenyl C61‐butyric acid methyl ester (PCBM) with thicknesses in the range 200–250 nm. To control film morphology, formation and thickness, the optimized inks incorporate two solvent systems in order to take advantage of surface tension gradients to create Marangoni flows that enhance the coverage of the substrate and reduce the roughness of the film. Notably, we achieve fill factors above 70% and attribute the improvement to an enhanced P3HT crystallization, which upon optimized post‐drying thermal annealing results in a favorable morphology. As a result, we could extend the thickness of the layer to several hundreds of nanometers without noticing a substantial decrease of the transport properties of the layer. By proper understanding of the spreading and drying dynamics of the inks we achieve spray coated devices with power conversion efficiency of 3.75%, with fill factor, short circuit current and open circuit voltage of 70%, 9.8 mA cm?2 and 550 mV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号