首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current–voltage (I–V), capacitance–voltage (C–V) and capacitance–frequency (C–f) characteristics of Al/aniline green(AG)/n-Si/AuSb structure were investigated at room temperature. A modified Norde's function combined with conventional forward I–V method was used to extract the parameters including barrier height (BH) and the series resistance. The barrier height and series resistance obtained from Norde's function was compared with those from Cheung functions, and it was seen that there was a good agreement between the BH values and series resistances from both methods. The C–V characteristics were performed at 10 and 500 kHz frequencies, and C–f characteristics were performed 0.0, +0.4 and −0.4 V.  相似文献   

2.
Al/Poly(methyl methacrylate)(PMMA)/p-Si organic Schottky devices were fabricated on a p-Si semiconductor wafer by spin coating of PMMA solution. The capacitance–voltage (CV) and conductance–voltage (GV) characteristics of Al/PMMA/p-Si structures have been investigated in the frequency range of 1 kHz–10 MHz at room temperature. The diode parameters such as ideality factor, series resistance and barrier height were calculated from the forward bias current–voltage (IV) characteristics. In order to explain the electrical characteristics of metal–polymer–semiconductor (MPS) with a PMMA interface, the investigation of interface states density and series resistance from CV and GV characteristics in the MPS structures with thin interfacial insulator layer have been reported. The measurements of capacitance (C) and conductance (G) were found to be strongly dependent on bias voltage and frequency for Al/PMMA/p-Si structures. The values of interface state density (D it) were calculated. These values of D it and series resistance (R s) were responsible for the non-ideal behavior of IV and CV characteristics.  相似文献   

3.
Hydrothermal zinc oxide (ZnO) nanorod (NR)-based p-Si/n-ZnO and p-Si/i-SiO2/n-ZnO heterojunctions were fabricated, and the effects of interfacial native SiO2 (~4 nm) on the I-V characteristics of heterojunctions under dark and ultra-violet illumination conditions were investigated. First, the structural and optical properties of ZnO seed crystals grown by sol-gel method and hydrothermal ZnO NRs on two different substrates of p-Si and p-Si/i-SiO2 were examined, and more improved optical and crystalline quality was obtained as revealed by photoluminescence and X-ray diffraction. The p-i-n heterojunctions showed ~3 times greater forward-bias currents and enhanced rectifying property than those of p-n junctions, which is attributed to the role of native SiO2 in carrier confinement by promoting the electron-hole recombination current through the deep level states of ZnO crystal. The measured ratios of photocurrent to dark current of the p-i-n structure were also greater under reverse bias (92–260) and forward bias (2.3–7.1) conditions than those (28–225 for reverse bias, 1.6–6.8 for forward bias) of p-n structure, and the improved photosensitivity of the p-i-n structure under reverse bias is due to lower density of recombination centers in the ZnO NR crystals. Fabricated ZnO NR heterojunction showed repeatable and fast photo-response transients under forward bias condition of which response and recovery times were 7.2 and 3.5 s for p-i-n and 4.3 and 1.7 s for p-n structures, respectively.  相似文献   

4.
The capacitance–voltage (C–V) and conductance–voltage (G/ω–V) characteristics of Al/SiO2/p-Si metal-oxide-semiconductor (MOS) Schottky diodes have been measured in the voltage range from ?3 to +3 V and frequency range from 5 KHz to 1 MHz at room temperature. It is found that both C and G/ω of the MOS capacitor are very sensitive to frequency. The fairly large frequency dispersion of C–V and G/ω–V characteristics can be interpreted in terms of the particular distribution of interface states at SiO2/Si interface and the effect of series resistance. At relatively low frequencies, the interface states can follow an alternating current (AC) signal that contributes to excess capacitance and conductance. This leads to an anomalous peak of C–V curve in the depletion and accumulation regions. In addition, a peak at approximately ?0.2 V appears in the Rs–V profiles at low frequency. The peak values of the capacitance and conductance decrease with increasing frequency. The density distribution profile of interface state density (Nss) obtained from CHF–CLF capacitance measurement also shows a peak in the depletion region.  相似文献   

5.
An n-ZnO nanorods/p-Si heterojunction photodetector with Al-doped ZnO (AZO) as an electron transporting layer was fabricated. The heterojunction with 20 nm AZO film showed a better characteristic than that of the device without AZO, and it displays a rectification ratio of 8470 at ±3 V and a turn-on voltage of 1.8 V. Also, based on spectral responsivity measurement, the device with AZO coating showed higher responsivity and better visible-blind detectivity than those without AZO, and the peak responsivity of the photodetector with AZO was as high as ~0.49 A/W at 354 nm. Furthermore, the photodetector with AZO layer showed a bigger UV–visible responsivity ratio (R354 nm / R546 nm) than that of the photodetector without AZO coating at −2 V. The role of AZO layer was illustrated through energy band theory and the electron transport mechanism.  相似文献   

6.
Aluminum-doped zinc oxide (ZnO:Al, AZO) electrodes were covered with very thin (∼6 nm) Zn1−xMgxO:Al (AMZO) layers grown by atomic layer deposition. They were tested as hole blocking/electron injecting contacts to organic semiconductors. Depending on the ALD growth conditions, the magnesium content at the film surface varied from x = 0 to x = 0.6. Magnesium was present only at the ZnO:Al surface and subsurface regions and did not diffuse into deeper parts of the layer. The work function of the AZO/AMZO (x = 0.3) film was 3.4 eV (based on the ultraviolet photoelectron spectroscopy). To investigate carrier injection properties of such contacts, single layer organic structures with either pentacene or 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine layers were prepared. Deposition of the AMZO layers with x = 0.3 resulted in a decrease of the reverse currents by 1–2 orders of magnitude and an improvement of the diode rectification. The AMZO layer improved hole blocking/electron injecting properties of the AZO electrodes. The analysis of the current-voltage characteristics by a differential approach revealed a richer injection and recombination mechanisms in the structures containing the additional AMZO layer. Among those mechanisms, monomolecular, bimolecular and superhigh injection were identified.  相似文献   

7.
《Solid-state electronics》2006,50(7-8):1238-1243
The dark current density–voltage characteristic of Au/ZnPc/Al device at room temperature has been investigated. Results showed a rectification behavior. At low forward bias, the current density was found to be ohmic, while at high voltages, space charge limited the current mechanism dominated by exponential trapping levels. Junction parameters such as rectification ratio (RR), series resistance (Rs), and shunt resistance (Rsh) were found to be 9.42, 9.72 MΩ, and 0.88 × 103 MΩ, respectively. The current density–voltage characteristics under white light illumination (100 W/m2) gives values of 0.55 V, 3 × 10−3 A/m2, 0.18 and 5.8 × 10−4% for the open circuit voltage, Voc, the short circuit current density (Jsc), the fill factor (FF), and conversion efficiency (η), respectively.  相似文献   

8.
The electrical characteristics of Pd Schottky contacts on ZnO films have been investigated by current-voltage (IV) and capacitance–voltage (CV) measurements at different temperatures. ZnO films of two thicknesses (400 nm and 1000 nm) were grown by DC-magnetron sputtering on n-Si substrates. The basic structural, optical and electrical properties of these films are also reported. We compared the two Schottky diodes by means of characteristic parameters, such as rectification ratio, ideality factor (η), barrier height (Φb) and series resistance and obtained better results for the 1000 nm-ZnO Schottky diodes. We also discussed the dependence of I‐V characteristics on temperature and the two distinct linear regions observed at low temperatures are attributed to the existence of two different inhomogeneous barrier heights. From IV plots in a log-log scale we found that the dominant current-transport mechanism at large forward bias is space-charge limited current (SCLC) controlled by the presence of traps within the ZnO bandgap. The existence of such traps (deep states or interface states) is demonstrated by frequency-dependent capacitance and deep-level transient spectroscopy (DLTS) measurements.  相似文献   

9.
An organic–inorganic contact was fabricated by forming a thin film of quinoline yellow dye (QY) on a p-Si wafer and evaporating Al metal on the film. The current–voltage (I–V) and capacitance–voltage (C–V) measurements of Al/QY/p-Si heterostructure were applied in dark and room temperature to calculate the characteristic parameters of diode like ideality factor, barrier height and series resistance. Ideality factor and barrier height values were found as 1.23 and 0.87 eV from I–V data, respectively. The series resistance value of the device was determined as 1.8 kΩ by using modified Norde function. The C–V measurements were carried out at different frequencies and it was seen that capacitance value decreased with increasing frequency. Interface state density distribution was calculated by means of I–V measurement. In addition the optical absorption of thin QY film on glass was measured and optical band gap of the film was found as 2.73 eV. Furthermore, I–V measurements of Al/QY/p-Si/Al were taken under illumination between 40 and 100 mW/cm2. It was observed that reverse bias current of the device increased with light intensity. Thus, the heterojunction had a strong response to the light and it can be suitable for electrical and optoelectronic applications like a photodiode.  相似文献   

10.
We report a study on the fabrication and characterization of ultraviolet photodetectors based on N-doped ZnO films. Highly oriented N-doped ZnO films with 10 at.% N doping are deposited using spray pyrolysis technique onto glass substrates. The photoconductive UV detector based on N-doped ZnO thin films, having a metal–semiconductor–metal (MSM) configuration are fabricated by using Al as a contact metal. IV characteristic under dark and UV illumination, spectral and transient response of ZnO and N-doped ZnO photodetector are studied. The photocurrent increases linearly with incident power density by more than two orders of magnitude. The photoresponsivity (580 A/W at 365 nm with 5 V bias, light power density 2 μW/cm2) is much higher in the ultraviolet region than in the visible.  相似文献   

11.
The electrical characteristics of Al/strained Si-on-insulator (sSOI) Schottky diode have been investigated using current–voltage (I–V) and capacitance–voltage (C–V) measurements in the wide temperature range of 200–400 K in steps of 25 K. It was found that the barrier height (0.57–0.80 eV) calculated from the I–V characteristics increased and the ideality factor (1.97–1.28) decreased with increasing temperature. The barrier heights determined from the C–V measurements were higher than those extracted from the I–V measurements, associated with the formation of an inhomogeneous Schottky barrier at the interface. The series resistance estimated from the forward I–V characteristics using Cheung and Norde methods decreased with increasing temperature, implying its strong temperature dependence. The observed variation in barrier height and ideality factor could be attributed to the inhomogeneities in Schottky barrier, explained by assuming Gaussian distribution of barrier heights. The temperature-dependent I–V characteristics showed a double Gaussian distribution with mean barrier heights of 0.83 and 1.19 eV and standard deviations of 0.10 and 0.16 eV at 200–275 and 300–400 K, respectively. From the modified Richardson plot, the modified Richardson constant were calculated to be 21.8 and 29.4 A cm−2 K−2 at 200–275 and 300–400 K, respectively, which were comparable to the theoretical value for p-type sSOI (31.6 A cm−2 K−2).  相似文献   

12.
Experimental results of the fabricated Schottky barrier diode on a GaSe:Gd substrate are presented. The electrical analysis of Au–Sb/p-GaSe:Gd structure has been investigated by means of current–voltage (I–V) and capacitance–voltage (C–V) measurements at 296 K temperature. The diode ideality factor and the barrier height have been obtained to be 1.07 and 0.85 eV, respectively, by applying a thermionic emission theory. At high currents in the forward direction, the series resistance effect has been observed. The series resistance has been determined from IV measurements using Cheung's method.  相似文献   

13.
A Mo/n-type 6H-SiC/Ni Schottky barrier diode (SBD) was fabricated by sputtering Mo metal on n-type 6H-SiC semiconductor. Before the formation of Mo/n-type 6H-SiC SBD, an ohmic contact was formed by thermal evaporation of Ni on n-type 6H-SiC and annealing at 950 °C for 10 min. It was seen that the structure had excellent rectification. The electrical parameters were extracted using its current–voltage (IV) and capacitance–voltage (CV) measurements carried out at room temperature. Very high (1.10 eV) barrier height and 1.635 ideality factor values were reported for Mo/n-type 6H-SiC using ln IV plot. The barrier height and series resistance values of the diode were also calculated as 1.413 eV and 69 Ω from Norde׳s functions, respectively. Furthermore, 1.938 eV barrier height value of Mo/n-type 6H-SiC SBD calculated from CV measurements was larger than the one obtained from IV data.  相似文献   

14.
Photosensitive n-TiN/p-Si heterojunctions are fabricated by the reactive magnetron sputtering of a thin titanium-nitride film with n-type conductivity onto polished polycrystalline p-Si wafers. The IV characteristics of the heterostructures are measured at different temperatures. The temperature dependences of the potential-barrier height and series resistance of the n-TiN/p-Si heterojunction are studied. The dominant mechanisms of current transport through the heterojunction in the cases of forward and reverse bias are established. The heterostructures generate the open-circuit voltage V oc = 0.4 V and the short-circuit current I sc = 1.36 mA/cm2 under illumination with a power density of 80 mW/cm2.  相似文献   

15.
ZnO microwires were grown using noncatalytic chemical vapor deposition method. The average diameter of the ZnO microwires were about 30 μm with length of up to 1–1.5 cm. Single ZnO microwire Schottky light emitting diode was fabricated using Au as Schottky contact electrode and using Al as ohmic contact electrode. The current–voltage (I–V) characteristics of Schottky diodes reveal good rectifying behavior. The Schottky barrier height and ideality factor were calculated to be 0.78 eV and 4.3, respectively. Furthermore, distinct electroluminescence with ultraviolet and visible emissions was detected from this device at room temperature.  相似文献   

16.
We have fabricated two types of Schottky barrier(SBDs),Au/SnO2/n-Si (MIS1) and Al/SnO2/p-Si (MIS2), to investigate the surface (Nss) and series resistance (Rs) effect on main electrical parameters such as zero-bias barrier height (ΦBo) and ideality factor (n) for these SBDs. The forward and reverse bias current–voltage (IV) characteristics of them were measured at 200 and 295 K, and experimental results were compared with each other. At temperatures of 200 and 295 K, ΦBo, n, Nss and Rs for MIS1 Schottky diodes (SDs) ranged from 0.393 to 0.585 eV, 5.70 to 4.75, 5.42×1013 to 4.27×1013 eV?1 cm?2 and 514 to 388 Ω, respectively, whereas for MIS2 they ranged from 0.377 to 0.556 eV, 3.58 to 2.1, 1.25×1014 to 3.30×1014 eV?1 cm?2 and 312 to 290 Ω, respectively. The values of n for two types of SBDs are rather than unity and this behavior has been attributed to the particular distribution of Nss and interfacial insulator layer at the metal/semiconductor interface. In addition, the temperature dependence energy density distribution profiles of Nss for both MIS1 and MIS2 SBDs were obtained from the forward bias IV characteristics by taking into account the bias dependence of effective barrier height (Φe) and Rs. Experimental results show that both Nss and Rs values should be taken into account in the forward bias IV characteristics. It has been concluded that the p-type SBD (MIS2) shows a lower barrier height (BH), lower Rs, n and Nss compared to n-type SBD (MIS1), which results in higher current at both 200 and 295 K.  相似文献   

17.
The frequency (f) and bias voltage (V) dependence of electrical and dielectric properties of Au/SiO2/n-GaAs structures have been investigated in the frequency range of 10 kHz–3 MHz at room temperature by considering the presence of series resistance (Rs). The values of Rs, dielectric constant (ε′), dielectric loss (ε″) and dielectric loss tangent (tan δ) of these structures were obtained from capacitance–voltage (C–V) and conductance–voltage (G/ω–V) measurements and these parameters were found to be strong functions of frequency and bias voltage. In the forward bias region, C–V plots show a negative capacitance (NC) behavior, hence ε′–V plots for each frequency value take negative values as well. Such negative values of C correspond to the maximum of the conductance (G/ω). The crosssection of the C–V plots appears as an abnormality when compared to the conventional behavior of ideal Schottky barrier diode (SBD), metal–insulator–semiconductor (MIS) and metal–oxide–semiconductor (MOS) structures. Such behavior of C and ε′ has been explained with the minority-carrier injection and relaxation theory. Experimental results show that the dielectric properties of these structures are quite sensitive to frequency and applied bias voltage especially at low frequencies because of continuous density distribution of interface states and their relaxation time.  相似文献   

18.
We report on the specific contact resistance of interfaces between thin amorphous semiconductor Indium Tin Zinc Oxide (ITZO) channel layers and different source/drain (S/D) electrodes (Al, ITO, and Ni) in amorphous oxide thin film transistors (TFTs) at different channel lengths using a transmission line model. All the contacts showed linear current–voltage characteristics. The effects of different channel lengths (200–800 μm, step 200 μm) and the contact resistance on the performance of TFT devices are discussed in this work. The Al/ITZO TFT samples with the channel length of 200 μm showed metallic behavior with a linear drain current-gate voltage (IDVG) curve due to the formation of a conducting channel layer. The specific contact resistance (ρC) at the source or drain contact decreases as the gate voltage is increased from 0 to 10 V. The devices fabricated with Ni S/D electrodes show the best TFT characteristics such as highest field effect mobility (16.09 cm2/V·s), ON/OFF current ratio (3.27×106), lowest sub-threshold slope (0.10 V/dec) and specific contact resistance (8.62 Ω·cm2 at VG=0 V). This is found that the interfacial reaction between Al and a-ITZO semiconducting layer lead to the negative shift of threshold voltage. There is a trend that the specific contact resistance decreases with increasing the work function of S/D electrode. This result can be partially ascribed to better band alignment in the Ni/ITZO interface due to the work function of Ni (5.04–5.35 eV) and ITZO (5.00–6.10 eV) being somewhat similar.  相似文献   

19.
The temperature dependence of the Schottky-barrier height and series resistance of two-terminal thin-film Al/nano-Si film/ITO structures are determined from the current—voltage (I–V) characteristics in the temperature range of 20–150°C. It is found that the form of the I–V characteristic at all investigated temperatures can be described by a model of two Schottky diodes connected back-to-back. For these diodes, the general formula is obtained, which allows the construction of functions approximating experimental curves with high accuracy. Based on this formula, a computational model is built, which generalizes the theoretical data obtained by S.K. Cheung and N.W. Cheung widely used for analyzing the I–V characteristics of single Schottky diodes. A technique is developed for calculating the Schottky-barrier heights in a system of two Schottky diodes connected back-to-back, their ideality factors, and the series resistance of the system. It is established that the barrier heights in the investigated temperature range are ~1 eV. According to the temperature dependence of the barrier height, such large values result from the presence of a SiO x (0 ≤ x ≤ 2) oxide layer at the nanoparticle boundaries. Charge carriers can overcome this layer by means of thermal excitation or tunneling. It is established that the intrinsic Schottky-barrier height of the Al/nc-Si film and nc-Si film/ITO junctions is ~0.1 eV. The activation dependences of the series resistance of the Al/nc-Si film/ITO structures and impedance spectra show that combined electric-charge transport related to ionic and electronic conductivity takes place in the structures under study. It is shown that the contribution of the electronic conductivity to the total transport process increases as the sample temperature is raised.  相似文献   

20.
Thin film of lead dioxide, α-PbO2, has been grown by thermal evaporation technique on the single crystal of p-Si substrate and heterojunction photodiode, Au/α-PbO2/p-Si/Al, was fabricated. The current-voltage characteristics of the diode have been studied in the temperature ranged from 303 to 373 K and the voltage applied during measurements varied from −1 to 1.5 V. It was found from the (I-V) characteristics of the diode that the conduction mechanisms in the forward bias direction are controlled by the thermionic emission at bias potential ≤0.7 V followed by single trap space charge limited current (SCLC) conduction in the voltage range >0.7 V. The capacitance-voltage characteristics of the device were studied at room temperature in dark condition and it has been shown that the diode is abrupt junction. The carrier concentration on both sides of the depletion layer has been determined. Energy band diagram for α-PbO2/p-Si device was constructed. The device under illumination with light of intensity 20 W/m2 gives acceptable values of photoresponse parameters such as photosensitivity and photoconductivity. The presented photodiode parameters exhibit the typical photosensor applications with reproducibility phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号