首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
兼具高能量密度与成本效益的锂硫电池,体现了良好的应用前景。但是,锂硫电池在正极与负极方面存在的问题,也阻碍了其进一步发展。针对锂硫电池目前存在的问题,总结了锂硫电池电极材料领域的研究进展。在正极部分,可通过多孔载体材料、多硫化物的化学吸附与催化位点的构建提升电池性能。在负极部分,通过对负极集流体改进、固体电解质界面(SEI)膜的生成以及固态电解质的使用,可起到保护锂负极、优化性能的效果。最后,本文认为,在锂硫电池未来的发展中,应统筹考虑电池系统整体的开发设计,而非仅针对电池单一领域存在的某一问题,从而使电池系统各部分的改进方法有效结合,发挥协同效应,推动锂硫电池实用价值的提升。  相似文献   

2.
Li–S电池被认为是最有希望的下一代高能量密度二次电池之一,开发高效阻燃电解液对于提升电池安全性极为重要.本文对高浓度磷酸三乙酯(TEP)和磷酸三(2,2,2-三氟乙基)酯(TFP)电解液在锂–硫化聚丙烯腈(Li–PAN/S)电池中的应用展开了深入研究,以同样的锂盐摩尔比和氟代醚稀释梯度,研究了TEP和TFP基局部高浓度电解液对锂金属负极和硫正极稳定性的影响,详细解析了两种溶剂分子在电池循环过程中的界面反应.研究表明,磷酸酯基高浓度电解液在Li–PAN/S电池中展示了较优异的循环稳定性,通过优化TTE的稀释比例,提升了电池的倍率特性.对比基于TEP和TFP的电解液,发现TEP基电解液具有更好的锂沉积/剥离性能,而TFP基电解液在界面生成更多的有机组分,导致不稳定的界面膜.以TEP212为电解液的锂硫电池能够在1C的倍率下稳定循环200圈以上,放电比容量保持在1080.8 mA·h·g-1.  相似文献   

3.
锂硫电池具有高能量密度、低成本、环保等特点,其潜在的应用前景十分广泛。解析了锂硫电池独特的工作原理,提出了导致锂硫电池难以商业化的重要原因,总结了锂硫电池由于活性物质体积膨胀、穿梭效应和锂枝晶等带来的主要技术难点。针对上述问题,重点综述和分析了国内外研究人员在电极材料方向进行锂硫电池性能改进的研究进展。目前,锂硫电池正极材料的研究热点在载硫体/硫复合材料和正极结构的改进,在实验室环境下,锂硫电池的能量密度和循环寿命都得到了显著提升。锂负极保护主要通过表面钝化的方法实现,而采用锂合金、锂嵌入脱出型材料或预嵌锂材料替代纯锂作为负极,也是提升电池性能的重要手段。此外,本文提出了深入发展锂硫电池的建议,重点需要进一步攻克技术难点,并从全电池系统加大研发力度,还要与企业结合共同推动锂硫电池的商业化进程。  相似文献   

4.
低碳、环保、高效是21世纪社会发展的主旋律。原材料廉价易得的锂硫(Li-S)电池因其超高能量密度(2 500 Wh·kg-1)而受到能源转化与储备设备研究者的瞩目。然而,锂硫电池绝缘的活性物质与循环过程中不可避免的穿梭效应导致其反应动力学缓慢,进而造成包括循环倍率能力较差与库伦效率低下在内的诸多问题。研究人员现已发现了具有良好电导率且对多硫化物(LiPSs)具有吸附转化双重能力的过渡金属磷化物(TMPs)。本文将重点介绍运用在锂硫电池正极的不同过渡金属磷化物材料的设计合成方法与电化学性能提升研究相关进展,并对该类材料的未来发展进行展望。  相似文献   

5.
锂硫电池的硫正极具有高的理论比容量(1675 mAh/g)和高的比能量(2600 Wh/kg),被认为是下一代锂电池技术。然而,单质硫以及其放电产物硫化锂导电性差和多硫化锂在电解液中溶解导致穿梭效应,严重阻碍了其商业化应用。采用硬模板法制备高比表面积和高吡啶氮掺杂的一维碳材料(NOMCs),通过物理约束和吡啶氮与多硫化锂之间强亲和力来抑制多硫化锂的穿梭效应。此材料中的石墨氮可以提高碳材料的导电性,而吡啶氮可以有效地吸附多硫化锂,抑制多硫化物在电解液中穿梭。因此,采用此材料载硫后,S@NOMCs在1C倍率下首次放电容量为853 mAh/g,充放电500次容量保持在679 mAh/g,容量衰减率仅为0.042%/圈。  相似文献   

6.
硫化物全固态锂金属电池以其高比能和高安全性得到了越来越多的关注,但是电解质与正负极极材料之间严重的界面问题仍然限制其进一步发展.为解决Li6PS5Cl固态电解质对金属锂不稳定的难点,许多工作提出引入合金负极、引入中间界面层以及电解质直接改性等策略,但是都和实际应用存在一定的差距.考虑到石榴石氧化物固态电解质Li6.4La3Zr1.4Ta0.6O12(LLZTO)具有较高的锂离子电导率和极好的材料稳定性,而Ag金属具有良好的导锂性,因此创新性地提出采用LLZTO与Ag的复合界面层来解决Li6PS5Cl全固态电池的金属负极界面问题,提高全电池的循环稳定性.研究了LLZTO和Ag简单分散复合、均匀分散包覆复合以及纳米球磨复合等不同组成的LLZTO–Ag复合界面层方式对Li6PS5Cl全固态锂金属电池负极界面的改善作用,并探究了优化后的全固态电池的电化学性...  相似文献   

7.
随着世界各国对于化石燃料的过度依赖,导致大气中的CO2气体排放愈演愈烈。Li-CO2电池作为一种清洁能源,可以捕获空气中的CO2转化为电能和具有高能量密度等特点,被称为是下一代能源存储设备。然而,由于Li-CO2电池在放电过程中产生一种宽带隙难溶物Li2CO3,导致电池在充电过程需要较高的充电电压进行分解,所以研究人员着重于开发可以有效分解放电产物的正极材料。本文归纳了锂-二氧化碳电池非均相正极材料的研究进展,对锂-二氧化碳电池的非均相正极催化剂的发展状况进行了介绍,对目前面临的挑战以及未来发展的趋势做出了归纳和总结,为开发高效可逆的锂-二氧化碳电池提供参考。  相似文献   

8.
近年来,在电动汽车和电子设备等对高性能储能系统的需求量逐渐增加,在较高理论比容量和理论比能量等方面的锂硫电池体系也受到更加广泛的关注和重视。单质硫的储量较为丰富且具有无毒和低成本等优势,对环境保护工作的开展存在着必要影响。但是单质硫及放电产物硫化锂存在着导电性差且中间产物多硫化物容易溶于电解液等问题,对锂硫电池的循环稳定性具有不利影响。在锂硫电池正极材料中,碳/硫复合材料的潜力是比较大的,这就需要加强对其植被及性能考察和研究。  相似文献   

9.
稀有金属锂是锂离子电池的核心元素,锂元素以锂金属氧化物的形式构成了不同空间结构(层状、橄榄石和尖晶石型)的电池正极材料,锂盐构成了电解质的主要成分,金属锂构成了锂离子电池的负极,锂离子通过电解质在正负极之间的嵌入和脱出实现了化学能和电能之间的转化。锂元素构成的不同结构的正极材料在成本、能量、动力、寿命、安全性这5个电池的核心指标上各有优势;不同种类的锂盐在热稳定性、离子迁移率、成本等方面各有千秋;锂金属负极与电解液之间的副反应是锂金属面临的一个主要问题。基于此,本文总结了锂资源储量、分布及应用结构,并基于国内外的研究现状,综合评述了不同结构类型的锂金属氧化物的特点、优势及存在的问题和相应的解决措施,归纳不同锂盐的特点,总结了锂金属作为负极的发展、优势及其存在的问题及相应解决方法,并分析了当今锂离子电池迫切需求的发展方向,预测锂金属对未来科技发展的重要性。  相似文献   

10.
锂离子电池正极材料的发展现状和研究进展   总被引:1,自引:1,他引:0  
介绍了锂离子电池正极材料钴酸锂、镍酸锂、锰酸锂、磷酸铁锂、钒的氧化物以及导电高聚合物正极材料的发展现状和研究进展.LiCoO2在今后正极材料发展中仍然有发展潜力,通过微掺杂和包覆都可使钴酸锂的综合性能得到提高,循环性能大大改善.环保、高能的三元材料和磷酸铁锂为代表的新型正极材料必将成为下一代动力电池材料的首选.  相似文献   

11.
层状Ni-Mn基锂离子电池正极材料进展   总被引:1,自引:1,他引:1  
层状Ni—Mn基锂离子电池正极材料具有层状结构镍酸锂(LiNiO2)的高比容量以及尖晶石型结构锰酸锂(LiMn2O4)的高安全性、低价格等特点,是最有可能代替或部分代替LiCoO2的新型正极材料用于小型锂离子电池,同时也可望用作低成本、高安全性和大容量动力型锂离子电池的正极材料。本文综述了层状Li—Ni—Mn—O系化合物和LiNi1/3Mn1/3Co1/3O2的合成工艺、结构特点和电化学性能,阐述了层状Ni—Mn基锂离子电池正极材料的发展、研究开发现状和应用前景。  相似文献   

12.
在目前主流的锂离子正极材料中,尖晶石锰酸锂(LiMn2O4)具有成本低廉与安全性能高的优势,因此在小型新能源汽车领域有广泛的应用。目前锰酸锂正极材料发展与应用的主要障碍在于锰元素的溶解。锰的溶解将导致循环性能的迅速衰退,在高温循环中尤为显著。在实验中,以氟化锂作为包覆物质,将其包覆于锰酸锂正极材料表面,从而将锰酸锂与电解液隔绝,起到抑制锰溶解的目的。X射线衍射表明,氟化锂与锰酸锂的共烧结过程中未发生氟掺杂,因此未引起锰酸锂的结构变化。通过对不同氟化锂包覆量电化学阻抗谱的研究,能够确定最合适的氟化锂包覆量。相比原始锰酸锂样品,经氟化锂包覆的锰酸锂正极材料与金属锂和石墨组成的软包电池均表现出了更加优异的电化学性能。其中,软包全电池能量密度达到183 Wh/Kg,1C条件下常温与高温循环1 000圈后容量保持率可达90.3%与75.7%。  相似文献   

13.
锂离子电池正极材料技术进展   总被引:8,自引:0,他引:8  
本文综述了锂离了也正极材料的研究进展,着重叙述了Li-CoO2、LiNiO2、LiMn2O4的结构特点,合成工艺方法和性能特点,及其在生产实践中的应用状况。  相似文献   

14.
磷酸铁锂正极材料具有比容量大、安全性高、性价比高以及循环寿命长等优点,被认为是最具应用前景的锂离子电池正极材料之一.论述了橄榄石型磷酸铁锂的晶体结构特征以及充放电反应机制,综述了近年来采用葡萄糖、活性碳和石墨烯等不同的碳源进行碳包覆,硫离子、镁离子、镍离子、氟离子、钒离子、钠离子和银离子等不同金属离子和非金属离子进行离...  相似文献   

15.
随着新能源汽车及储能行业的快速发展,传统正极材料难以满足人们对电池高能量、高密度锂电池的要求。富含Li和Mn的层状氧化物xLi2MnO3·(1–x)LiMO2 (M=Ni,Mn,Co),其高比容量可超过250 mA·h·g–1,有希望成为下一代锂离子电池最理想的正极材料。但是,富锂材料仍存在首次循环不可逆容量高、循环性能差和倍率容量低等问题,为解决这些问题,本文阐述了富锂正极材料的结构和电化学反应之间的构效关系,讨论了金属氧化物、金属氟化物、碳、导电聚合物和锂离子导体等涂层材料对富锂正极材料电化学性能的影响规律及作用机理,同时还对以上涂层在富锂正极材料中应用的优缺点进行了总结。最后,对锂离子电池富锂正极材料的包覆改性的未来发展发现作出展望。   相似文献   

16.
随着新能源汽车产业的持续发展,动力电池将会逐步达到寿命周期而退役,首先退役的主要是早期投入市场的磷酸铁锂电池。对磷酸铁锂正极材料的回收可分为资源化回收和再生回收两种,围绕这两个方向科学家开展了大量的研究。本文首先对Li,Fe的资源化回收进行总结,从回收体系对回收效率影响的角度对文献进行分析,并指出了资源化回收存在的不足。研究显示,磷酸铁锂晶体结构十分稳定,通过简单热处理即能修复其失效结构。因此,本文对磷酸铁锂材料的修复再生技术研究进展进行了详细总结,主要从直接再生、补锂再生、提纯得到磷酸铁后再生等方面进行分析,介绍了各项技术的最新研究进展。此外,本文还介绍了一些新型回收技术,如无毒无害溶剂的使用、混合正极的选择性剥离、生物回收技术等。通过以上对磷酸铁锂材料回收和再生研究进展的系统总结,对退役磷酸铁锂电池回收的未来发展方向做出展望。  相似文献   

17.
根据新型动力电池材料磷酸铁锂的工艺要求,研制了氮气消耗少、气氛控制稳定的新型磷酸铁锂氮气保护钢带炉。详细介绍了设备的原理、结构设计和调试。炉体端头密封及上下料装置的设计新颖独特,炉膛氧含量少于15×10-6,安全可靠,是高温固相合成磷酸铁锂电池正极材料理想的生产加热设备。  相似文献   

18.
正复旦大学化学系、新能源研究院夏永姚教授课题组首次提出一种新型的锂离子(钠离子)电池体系,该体系正极采用一种含有碘离子、锂离子/钠离子的水溶液,负极采用一种固态有机聚合物,电解质采用硝酸锂或硫酸锂的水溶液,聚合物离子交换膜作为隔膜将液态正极和固态负极分隔开。相关研究成果发表在国际顶级学术刊物《科学进展》上。该杂志为Science刊物旗下子刊,是一个涵盖  相似文献   

19.
介绍了锂离子电池正极材料钴酸锂、镍酸锂、磷酸铁锂和锰酸锂的性能,以及它们作为动力电池正极材料的可行性。磷酸铁锂和锰酸锂以其优异的性能成为最热的动力电池正极材料,并且锰酸锂的研究及应用进展表明锰酸锂已经成为锂离子动力电池正极材料的首选。  相似文献   

20.
随着磷酸亚铁锂锂离子电池市场大幅度增长,大量磷酸亚铁锂电池需要回收。以废旧磷酸亚铁锂正极材料湿法回收中的氧化、浸出和磷酸铁沉淀为重点,以锂盐和磷酸铁为目标产物,介绍国内外湿法回收废旧磷酸亚铁锂正极材料的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号