首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The Bi2MoO6/g-C3N4 heterojunction photocatalysts have been successfully fabricated using a simple liquid chemisorptions and thermal post-treatment. These nanostructured Bi2MoO6/g-C3N4 composites were extensively characterized by X-ray diffraction(XRD), field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR),UV–vis diffuse reflectance spectra (UV–vis DRS) and Photoluminescence (PL). The photocatalytic results show that 20 wt% Bi2MoO6/g-C3N4 sample exhibits efficient visible light activity and excellent photo-stability. The kinetic constant of RhB degradation over 20 wt% Bi2MoO6/g-C3N4 is about 5 and 2.5 times higher than that over pure Bi2MoO6 and g-C3N4 nanosheets, respectively. The enhanced photocatalytic performance is attributed to the construction of heterogeneous interface to promote photo-induced charge carrier pairs separation.  相似文献   

2.
SO42− decorated g-C3N4 with enhanced photocatalytic performance was prepared by a facile pore impregnating method using (NH4)2S2O8 solution. The photocatalysts were characterized by the Brunauer–Emmett–Teller (BET) method, X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS) and surface photovoltage (SPV) spectroscopy, respectively. The separation efficiency of photo-generated charge was investigated using benzoquinone as scavenger. The results demonstrate that sulfating of g-C3N4 increases the adsorption of rhodamine B on g-C3N4, the hydroxyl content and the separation efficiency of photo-generated charge. The photocatalytic activity of SO42−/g-C3N4 for decolorization of rhodamine B and methyl orange (MO) aqueous solution was evaluated. The result shows that loading of 6.0 wt% SO42− results in the best photocatalytic activity under simulated solar irradiation and SO42− play an important role in boosting the photocatalytic activity.  相似文献   

3.
Graphitic-carbon nitride/bismuth oxybromide (g-C3N4/BiOBr) porous microspheres have been successfully synthesized by a one-pot ethylene glycol (EG) assisted microwave process in the presence of 1-hexadecyl-3-methylimidazolium bromine ([C16mim]Br). The as-prepared samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) and UV–vis diffuse reflectance spectroscopy (DRS). During the reaction process, the ionic liquid acts not only as solvent and Br source but also as a template for fabrication of g-C3N4/BiOBr porous microspheres. In addition, the photocatalytic activity of the g-C3N4/BiOBr is evaluated by degrading Rhodamine B (RhB) and ciprofloxacin (CIP) under visible-light irradiation. It is found that 12.75 wt% g-C3N4/BiOBr microspheres exhibit higher photocatalytic activity than that of the as-prepared BiOBr. A possible photocatalytic mechanism based on the relative band positions of g-C3N4/BiOBr has been proposed.  相似文献   

4.
Highly efficient visible-light-driven AgBr/Ag3PO4 hybrid photocatalysts with different mole ratios of AgBr were prepared via an in-situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgBr/Ag3PO4 photocatalysts displayed the higher photocatalytic activity than pure Ag3PO4 and AgBr for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgBr/Ag3PO4 with 60% of AgBr exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgBr/Ag3PO4 readily transformed to be Ag@AgBr/Ag3PO4 system while the photocatalytic activity of AgBr/Ag3PO4 remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h+ and O2∙− play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgBr/Ag3PO4 hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag3PO4, Ag and AgBr, in which Ag nanoparticles act as the charge separation center.  相似文献   

5.
A novel Ag modified BiOF/g-C3N4 (Ag-BiOF/g-C3N4) organic–inorganic hybrid photocatalysts have been synthesized by a facile solvothermal route. The photocatalyst was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflection spectroscopy (UV-DRS) and X-ray photoelectron spectroscopy (XPS). The photocatalytic studies reveals that the as-prepared Ag-BiOF/g-C3N4 photocatalyst exhibited significantly enhanced photocatalytic activity than the pure BiOF and BiOF/g-C3N4 photocatalysts toward degrading methylene blue (MB) under visible light irradiation. The heterostructured combination of Ag, g-C3N4 and BiOF micro squares provides synergistic photocatalytic performance through an efficient electron transport mechanism.  相似文献   

6.
Several novel micro-nano Ag3PO4/ZnFe2O4 with excellent magnetic separation property and photocatalytic performance were successfully synthesized using different organic additives for the first time. In the composite, Ag3PO4 with flower-like, quadrangular prism and flake structures were obtained when the organic additive is hexadecyl trimethyl ammonium bromide (CTAB), sodium diethyldithiocarbamate (DDTC), or DL-malic acid (DLMA), respectively, while the ZnFe2O4 showed uniform spherical structure. From the results of the photocatalytic activity analysis, the Ag3PO4/ZnFe2O4 gained with the organic additive of DDTC showed the highest photocatalytic capability for 2, 4-dichlorophenol (2, 4-DCP) degradation under visible light irradiation compared with those of CTAB and DLMA as the additives. Moreover, the composition of the composite seriously influences the photocatalytic activity, and when the mass ratio of Ag3PO4 and ZnFe2O4 in the Ag3PO4/ZnFe2O4 (DITCH) is 9:1, the apparent photo degradation rate constant of 2, 4-DC is 0.0155 min−1, which is 5.74 times of ZnFe2O4 (0.0027 min−1) and 1.89 times of Ag3PO4 (0.0082 min−1). Finally, the photocatalytic mechanism of Ag3PO4/ZnFe2O4 was discussed based on the heterojunction energy-band theory and Z-Scheme theory in detail.  相似文献   

7.
The novel visible light-induced g-C3N4/BiFeO3 composites were successfully synthesized by introducing BiFeO3 into polymeric g-C3N4. The structures and optical properties of composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), field-emission transmission electron microscope (TEM), UV–vis diffuse reflection spectroscopy (DRS), respectively. For the degradation of Rhodamine B (RhB), the g-C3N4/BiFeO3 composites exhibited significantly higher visible light photocatalytic activity than that of a single semiconductor. The optimal percentage of doped g-C3N4 was 50%. Both photooxidation and photoreduction processes follow first order kinetics. In addition, the stability of the prepared photocatalyst in the photocatalytic process was also investigated. The enhanced photocatalytic performance could be due to the high separation efficiency of the photogenerated electron–holes pairs. The possible photocatalytic mechanism of g-C3N4/BiFeO3 was proposed to guide the further improvement of their photocatalytic activity.  相似文献   

8.
A high-performance photocatalyst of AgI–Ag3PO4/multi-walled carbon nanotubes (MWCNTs) was fabricated by chemical precipitation method using KI, K2HPO4 and AgNO3 in the presence of MWCNTs. Its structure and physical properties were characterized by means of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD), UV–vis absorption spectra, X-ray photo-electron spectroscopy (XPS), photoluminescence spectra (PL) and photocurrent techniques. SEM, TEM and EDS analyses verified that AgI–Ag3PO4 is successfully loaded on MWCNTs. AgI–Ag3PO4/MWCNTs possess the absorption edge of red shift and small band gap energy, and could absorb more photons in the visible region. PL and photocurrent analyses illustrated that AgI–Ag3PO4/MWCNTs have the lowest emission peak intensity and the highest photoelectric current, compared with Ag3PO4, AgI and AgI–Ag3PO4. By using the photocatalytic degradation of mixed dyes wastewater of Orange II and ponceau 4R as a model reaction, the photocatalytic efficiencies of Ag3PO4, AgI, AgI–Ag3PO4 and AgI–Ag3PO4/MWCNTs were evaluated. The reaction results showed that AgI–Ag3PO4/MWCNTs have strong photocatalytic activity and excellent chemical stability in repeated and long-term applications. Therefore, the prepared AgI–Ag3PO4/MWCNTs could act as a high-performance catalyst for the photocatalytic degradation of mixed dyes wastewater and also suggested the promising applications.  相似文献   

9.
The new sensing material, LiFe0.995Y0.0025Ag0.0025PO4 was synthesized using hydro-thermal methods, and characterized by X-ray diffraction, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The as prepared products were subsequently utilized in a self assembled optical waveguide gases testing apparatus and a WS-30A electro-chemical gas sensing apparatus for xylene detection. A glass optical waveguide gas sensor was fabricated by spin-coating a LiFe0.995Y0.0025Ag0.0025PO4 thin film on the surface of single-mode tin-diffused glass Optical Waveguide. The sensing elements for electro-chemical gas sensor were made by dip-coating a LiFe0.995Y0.0025Ag0.0025PO4 thin film on the surface of an alumina ceramic tube, assembled with platinum wire. The experimental results indicated that, at room temperature, LiFe0.995Y0.0025Ag0.0025PO4 thin film/tin-diffused optical waveguide sensing element exhibited higher response to xylene in the range of 0.1–100 ppm; at an optimum operating temperature (300 °C), the response (Sr) of LiFe0.995Y0.0025Ag0.0025PO4 to 100 ppm of xylene was 5.29, as measured by the WS-30A electro-chemical gases sensing apparatus.  相似文献   

10.
The present work demonstrates the preparation of Ag3VO4/ZnO nanocomposites with an n–n heterojunction, as novel visible-light-driven photocatalysts, with different mole fractions of silver vanadate. The preparation method is facile one-pot, large-scale, and low-temperature and does not require any post preparation treatments. The microstructure, morphology, purity, and electronic properties of the as-prepared samples were studied using X-ray diffraction, scanning electron microscopy, energy dispersive analysis of X-rays, UV–vis diffuse reflectance spectroscopy, Fourier transform-infrared spectroscopy, and photoluminescence techniques. Photocatalytic activity of the nanocomposites was examined by degradation of rhodamine B under visible-light irradiation. It was found that mole fraction of silver vanadate has a considerable influence on the photocatalytic activity. The nanocomposite with 0.218 mol fraction of Ag3VO4 exhibited the superior activity relative to the other compositions. Compared with the pure ZnO and Ag3VO4, the nanocomposite exhibited 10.5 and 1.6-fold enhancement, respectively, in the degradation rate constant. In addition, influence of the refluxing time, calcination temperature, and scavengers of reactive species on the degradation activity was investigated in detail and the results were discussed. Moreover, the nanocomposite was found to be a reusable photocatalyst.  相似文献   

11.
Nanostructured barium tungstate (BaWO4) as a solar photocatalyst has been successfully synthesized by a chemical solution method. The sample was characterized using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and UV–vis diffuse reflectance spectroscopy. Then, the photocatalytic degradation of methylene blue (MB) in an aqueous medium was evaluated with nanostructured BaWO4 under direct sunlight irradiation. The effects of the initial pH, and the catalyst dosage on the dye degradation were studied in order to achieve maximum degradation efficiency. The nanostructured BaWO4 exhibited good photocatalytic activity for degradation of MB under sunlight irradiation at pH 10 after 3 h of irradiation. Also, the optimal catalyst loading of 25 mg/L obtained throughout the present study. The degradation of the dye followed the first-order reaction and the adsorption obeyed the Langmuir model.  相似文献   

12.
13.
SnO2/BiVO4 heterojunction composite photocatalysts with various mole ratios have been prepared via a simple hydrothermal method. The structure, composition and optical properties of the SnO2/BiVO4 composites were determined by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface analysis, X-ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectroscopy (UV–vis DRS). Photocatalytic activities of the composites were evaluated by studying the degradation of methylene blue (MB) solutions under simulated visible light irradiation (500 W halogen tungsten lamp). The 3:7 mol ratio SnO2/BiVO4 composite exhibited the highest photocatalytic performance, leading to 72% decompositon of MB within 120 min of irradiation.  相似文献   

14.
The visible light driven Bi2MoO6 photocatalyst doped with different contents of Ag nanoparticles was successfully synthesized by a combination of hydrothermal and sonochemical methods. The as-synthesized samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopy (SEM and TEM) and UV–visible spectroscopy to investigate crystalline structure, morphology, composition and photocatalytic properties. XRD patterns and TEM images of the samples revealed pure phase orthorhombic Bi2MoO6 nanoplates without any detection of Ag dopant due to its low concentration and very tiny particle size. TEM images showed that Ag nanoparticles with the size of 10–15 nm were dispersed randomly on the surface of Bi2MoO6. The XPS analysis of Ag/Bi2MoO6 nanocomposites revealed the presence of additional metallic Ag. Photocatalytic activities of the Ag/Bi2MoO6 nanocomposites were evaluated by determining the degradation of rhodamine B (RhB) under visible light radiation. In this research, the 10 wt% Ag/Bi2MoO6 nanocomposites showed the best photocatalytic activity. The results suggest that the dispersion of Ag nanoparticles on the surface of Bi2MoO6 significantly enhances its photocatalytic activity.  相似文献   

15.
The purpose of this work was to investigate, in the first study of its kind, hydrogen production by photocatalytic water splitting under visible light irradiation using Eosin Y-sensitized mesoporous-assembled TiO2–ZrO2 mixed oxide nanocrystal photocatalysts. The mesoporous-assembled TiO2–ZrO2 mixed oxide nanocrystals, with various TiO2-to-ZrO2 molar ratios, were synthesized by a sol–gel method with the aid of a structure-directing surfactant. The synthesized nanocrystals were characterized by thermogravimetric and derivative thermogravimetric analyzer, N2 adsorption–desorption, X-ray diffraction, UV–visible spectroscopy, scanning electron microscope–energy-dispersive X-ray analyzer, and transmission electron microscope analyses. Parameters affecting the photocatalytic activity, including calcination conditions and phase composition, were mainly discussed. Experimental results showed that the incorporation of ZrO2 with suitable contents could preserve the mesoporous-assembled structure of TiO2 at high calcination temperatures and enhance its thermal stability significantly. Results of the photocatalytic-sensitized hydrogen production revealed that the TiO2–ZrO2 mixed oxide photocatalyst, with a TiO2-to-ZrO2 molar ratio of 95:5, calcined at 800 °C for 4 h, provided maximum photocatalytic hydrogen production activity. The optimized TiO2–ZrO2 mixed oxide photocatalyst can be considered as a potential photocatalyst for hydrogen production under solar light irradiation.  相似文献   

16.
Novel visible-light-driven Ag3PO4@C3N4PO4 loaded with metal Ag were synthesised via an anion-exchange precipitation method and regenerated by H2O2 and NaNH3HPO4. The obtained Ag/Ag3PO4@C3N4 and regenerated Ag/Ag3PO4@C3N4 were characterised by XRD, XPS, SEM and UV–vis. The XRD and UV–vis results revealed that the crystal structure and light adsorption property of Ag/Ag3PO4@C3N4 were similar to that of regenerated Ag/Ag3PO4@C3N4. The XPS result showed that the metallic Ag0 deposited on the surface of Ag/Ag3PO4@C3N4 and regenerated Ag/Ag3PO4@C3N4. The Ag/Ag3PO4@C3N4 hybrids displayed remarkable photocatalytic activity and stability after regeneration. Compared with pure Ag3PO4 or C3N4, the Ag/Ag3PO4@C3N4 and regenerated Ag/Ag3PO4@C3N4 enhancement in the photodegradation rate towards methyl orange is observed over under visible light irradiation. The enhanced photocatalytic performance was attributed to the synergistic effect between Ag3PO4 and C3N4 and a small amount of Ag0 which suppresses the charge recombination during photocatalytic process. This work could provide new insights into the fabrication of high stability visible photocatalysts and facilitate their practical application in environment issues.  相似文献   

17.
Pure-phase BiFeO3 catalysts with different morphologies were synthesized by microwave hydrothermal treatment at 200 °C with and without surfactant. The as-prepared catalysts were characterized by X-ray diffraction, scanning electron microscopy, and diffuse reflectance spectroscopy. Their photocatalytic properties were also explored. Ball-like (no surfactant), flower-like (EDTA), and honeycomb-like (polyvinylpyrrolidone) BiFeO3 catalysts were obtained. Surfactant addition decreased the bandgap of BiFeO3 catalysts. The specific surface area for ball-like, flower-like, and honeycomb-like BiFeO3 catalysts was 7.48, 3.48, and 12.38 m2/g, and the rate of rhodamine B degradation under UV light was 49%, 61%, and 87%, respectively, at 4 h.  相似文献   

18.
Oxidized activated carbon/Fe3O4 (AC/Fe3O4) composites for supercapacitor electrodes were synthesized by a reduction method. Poly(vinylpyrrolidone) was added as a dispersing agent for homogeneous deposition of Fe3O4 on AC. The obtained products were identified as AC/Fe3O4 by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. Morphological characterization of AC/Fe3O4 was carried out by field emission scanning electron microscopy (FE-SEM); the results clearly showed the formation of Fe3O4 nanoparticles about 30 nm in diameter on AC. Moreover, by using N2 adsorption/desorption isotherm analysis, we confirmed that surface areas and pore volumes decreased with increasing Fe3O4 content. We also carried out electrochemical characterization of AC and AC/Fe3O4 composites. Remarkably, we found that the value of specific capacitance increased significantly from 99.4 F g−1 of raw AC to 202.6 F g−1 of AC/Fe3O4 composites at 10 mV s−1 of scan rate. This result can be ascribed to a synergistic effect of the combination of electrical double-layer capacitance and pseudo-capacitance properties. This research represents a valuable contribution to the application of supercapacitor electrodes in regard to cost effectiveness and simple fabrication.  相似文献   

19.
Fe3O4/SiO2/TiO2 nanocomposites with well-defined core-shell structures were successfully prepared by a facile hydrothermal synthetic method for titania coating on Fe3O4/SiO2 magnetic core. The as-prepared Fe3O4/SiO2/TiO2 composite particles were characterized by X-ray diffraction (XRD),transmission electron microscopy (TEM),Fourier transform infrared spectroscopy (FT-IR). The results showed that Fe3O4/SiO2/TiO2 was well crystallized at 140 °C with well-defined core-shell structures. Fe3O4/SiO2/TiO2 nanocomposites as well as pure TiO2 showed good photocatalytic performance in the decolorization of methyl orange aqueous solution. Magnetic core coated by SiO2 and TiO2 layer still retained the good magnetic properties (Ms:3.04 emu g-1) to facilitate catalyst recovery using external magnetic field.  相似文献   

20.
Thermoelectric delafossite (CuAlO2)1−x(Ag2O)x with 0<x<0.06 is prepared at three different sintering temperatures, 1323 K, 1373 K, and 1473 K. The samples are obtained from a mixture of CuO, Al2O3, and additive Ag2O powders. The mixture is ground and then pressed with uniaxial pressure into pellets. Differential scanning calorimetry and X-ray diffraction spectroscopy show that the sintering temperature to synthesize delafossite CuAlO2 with Ag2O addition is below 1473 K. X-ray diffraction patterns show the major phase of delafossite 3R-CuAlO2 along with a trace amount of 2H-CuAlO2. A small amount of the Ag phase is present in the samples depending on the amount of Ag2O addition and sintering temperature. Energy dispersive spectroscopy and backscattered electron image analyses show that the Ag phase is segregated around the grain boundary. Liquid-phase sintering is used to explain the growth mechanism. The CuAlO2 samples with Ag2O addition obviously exhibit enhanced bulk density, grain size, and electrical conductivity. The highest power factor (PF), obtained by CuAlO2 with 2 at% of Ag2O sintered at 1373 K, is 8.23×10−5 W/(m K2) at 873 K. Hence, our findings show an improvement for delafossite CuAlO2 by Ag2O addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号