首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A micromechanical finite element (FE) framework was developed to predict the viscoelastic properties (complex modulus and creep stiffness) of the asphalt mixtures. The two-dimensional (2D) microstructure of an asphalt mixture was obtained from the scanned image. In the mixture microstructure, irregular aggregates and sand mastic were divided into different subdomains. The FE mesh was generated within each aggregate and mastic subdomain. The aggregate and mastic elements share nodes on the aggregate boundaries for deformation connectivity. Then the viscoelastic mastic with specified properties was incorporated with elastic aggregates to predict the viscoelastic properties of asphalt mixtures. The viscoelastic sand mastic and elastic aggregate properties were inputted into micromechanical FE models. The FE simulation was conducted on a computational sample to predict complex (dynamic) modulus and creep stiffness. The complex modulus predictions have good correlations with laboratory uniaxial compression test under a range of loading frequencies. The creep stiffness prediction over a period of reduced time yields favorable comparison with specimen test data. These comparison results indicate that this micromechanical model is capable of predicting the viscoelastic mixture behavior based on ingredient properties.  相似文献   

2.
针对沥青砂的非线性材料特性,结合连续损伤力学理论,对传统Burgers模型进行改造,提出了粘弹塑蠕变损伤本构模型,通过对不同实验条件下沥青砂单轴蠕变试验结果的非线性拟合,获得模型参数,然后利用模型进行预测分析,得到了不同应力水平与环境温度下的蠕变曲线和损伤演化曲线,通过比较发现该文模型能够更合理地反映沥青砂加速蠕变的非线性特征,而且蠕变过程中损伤演化的速度受蠕变时间、应力水平与环境温度的影响很大。  相似文献   

3.
A nonlinear constitutive relationship was developed for asphalt binders. Two binders, one polymer modified and one unmodified, were tested in shear using creep and recovery loading. Five different stress levels and four loading times were considered, to capture the response of the binders in the linear and nonlinear viscoelastic range. The creep response of the binders was successfully modeled with a nonlinear power law function. The modified superposition principle was unable to predict the recovery phase of the testing data. A nonlinear constitutive relationship composed of a nonlinear viscous part plus a linear viscoelastic part was developed. The constitutive relationships successfully predicted the binders’ response in creep and recovery. The predictions of the constitutive relationships matched accurately the response of the binders subjected to the Multiple Stress Creep and Recovery loading pattern.  相似文献   

4.
Asphalt concrete consists of coarse aggregates coated with asphalt binder, matrix, which is a mixture of binder and fine aggregates, and mastic, which is a mixture of asphalt binder and fines passing number 200 sieve (0.075 mm). In this study, nanoindentation tests were conducted on dry and wet mastic materials to determine the contact creep compliance, which is used to examine the effects of moisture in the mastic materials. Indentation creep data were fitted using viscoelastic mechanical models. Results show that the dry mastic materials exhibits viscoelastic behavior, while the wet mastic materials shows less viscoelastic behavior compared to the dry mastic materials. Moisture reduces retardation time significantly in the wet mastic materials. The dry mastic materials follow the linear Burgers viscoelastic model and the wet mastic materials follow the Maxwell viscoelastic model. Stiffness measured on the surface of the wet mastic materials is higher than that of the dry mastic materials. Due to moisture conditioning, mastic sample surface might have eroded that makes it less viscous or become exposed to mastic aggregate, and therefore exhibits high stiffness. Indentation results reveal that the wet mastic is softer below a certain depth from the surface. This study projects that the indenter needs to penetrate more than 4000 nm to reach softer wet mastic materials. Also indentation creep holding time needs be more than 1200 s to reach that target depth in wet mastic materials.  相似文献   

5.
沥青砂混合料粘弹塑力学特性研究   总被引:1,自引:0,他引:1  
蔡宜洲  叶永 《工程力学》2012,(Z2):182-185
在0.1MPa、0.15MPa、0.2MPa、0.25MPa和0.3MPa下进行了沥青砂试样单轴压缩和蠕变实验,分析了其压缩和蠕变性质,根据变形机理提出了粘弹塑本构模型可由粘弹性和粘塑性的两个子模型串联构成,通过对粘塑性子模型中粘性系数进行改进,理论推导了模型蠕变本构方程,确定了模型参数,并求得模型参数与加载应力函数关系。进行模型预测与实验结果对比,结果表明:该模型能够描述沥青砂试样在不同应力下蠕变变形的3个阶段,反映了沥青砂混合料粘弹塑变形特点。  相似文献   

6.
Low temperature cracking induced by seasonal and daily thermal cyclic loads is one of the main critical distresses in asphalt pavements. The safety of aircraft departure and landing becomes a crucial issue in runways when thermal cracks occur in airport pavements. The low-temperature fracture behavior of airport pavements was investigated using a bilinear cohesive zone model (CZM) implemented in the finite element method (FEM). Nonlinear temperature gradients of pavement structures were estimated based on national weather data and an integrated climate prediction model. Experimental tests were conducted to obtain the numerical model inputs such as viscoelastic and fracture properties of asphalt concrete using creep compliance tests, indirect tensile strength tests (IDT), and disk-shaped compact tension (DC(T)) tests. The finite element pavement fracture models could successfully predict the progressive crack behavior of asphalt pavements under the critical temperature and heavy aircraft gear loading conditions.  相似文献   

7.
Abstract

The rheological behaviour and reinforcement mechanism of asphalt mastic mixed with fibres at high temperature were investigated in this study. Fibres, including basalt, polyester and glass, were added to asphalt mastic. Repeated creep and multi-stress creep tests were conducted to characterise the high-temperature properties of the mastic, and numerical simulation was performed with ABAQUS software to analyse the reinforcement effect of fibres. Test results indicate that the fibres have excellent reinforced performance; for example, the accumulated strain and its change rate decrease, and its creep stiffness modulus increases after the fibres are mixed into the mastic. The creep recovery rate increases, and its creep residual value decreases at a high stress level. The creep stiffness modulus under different loading cycles can be expressed by a power function. Numerical simulation shows that the fibres effectively absorb mastic stress; hence, creep strain in the mastics decreases. The Burgers model was utilised to present the rheological behaviours of mastics with fibres; the model parameters were estimated.  相似文献   

8.
Edge cracked semi‐circular shape specimen subjected to three point bend loading is a favourite test specimen for determining fracture toughness of asphalt mixtures. However, in the vast majority of previous experimental works, the homogeneous medium assumption has been considered for determining the stress intensity factor and geometry factors of asphalt mixtures tested with this test configuration. As a more realistic model and in order to consider the effects of heterogeneity on corresponding values of stress intensity factors, the asphalt mixture was modelled as a two‐phase aggregate/mastic heterogeneous mixture and its fracture behaviour was investigated using numerical models of asymmetric semi‐circular bend (ASCB) specimens. The generation and packing algorithm was employed to randomly distribute the aggregates with different shapes and sizes inside the mastic part. The effect of the mechanical properties of asphalt mixture (elastic modulus and the Poisson's ratios of aggregates and mastic), coarse aggregates distribution and crack length were studied on modes I and II geometry factors by means of extensive two‐dimensional finite element analyses. Moreover, the effect of the elastic modulus of asphalt mixture components was evaluated on the fracture path using the maximum tangential stress criterion. It was shown that crack tip location, elastic modulus of aggregates and mastic are the most important affecting parameters on the magnitude of modes I and II geometry factors. It was also shown that the geometry factors are not sensitive to the Poisson's ratios of aggregates and mastic. In addition, fracture cracking path is affected by the elastic modulus of the asphalt mixture components such that, depending on the difference between the stiffness of stiffer coarse aggregates and softer mastic part, the crack may propagate either through the aggregates, mastic or interface of aggregate/mastic.  相似文献   

9.
This paper investigates the use of discrete element modelling (DEM) to simulate the behaviour of a highly idealised bituminous mixture under uniaxial and triaxial compressive creep tests. The idealised mixture comprises single-sized spherical (sand-sized) particles mixed with bitumen and was chosen so that the packing characteristics are known (dense random packing) and the behaviour of the mixture will be dominated by the bitumen and complex aggregate interlock effects will be minimised. In this type of approach the effect of the bitumen is represented as shear and normal contact stiffnesses. A numerical sample preparation procedure has been developed to ensure that the final specimen is isotropic and has the correct volumetrics. Elastic contact properties have been used to investigate the effect of the shear and normal contact stiffnesses on bulk material properties. The bulk modulus was found to be linearly dependent on the normal contact stiffness and independent of the shear contact stiffness. Poisson’s ratio was found to be dependent on only the ratio of the shear contact stiffness to the normal contact stiffness. An elastic contact has been assumed for the compressive normal contact stiffness and a viscoelastic contact for shear and tensile normal contact stiffness to represent the contact behaviour in idealised mixture. The idealised mixture is found to dilate when the ratio of compressive to tensile contact stiffness increases as a function of loading time. Uniaxial and triaxial viscoelastic simulations have been performed to investigate the effect of stress ratio on the rate of dilation with shear strain for the sand asphalt. The numerical results have been validated with experimental data.  相似文献   

10.
The objective of this study is to predict the dynamic modulus of asphalt mixture using both two-dimensional (2D) and three-dimensional (3D) Distinct Element Method (DEM) generated from the X-ray computed tomography (X-ray CT) images. The 3D internal microstructure of the asphalt mixtures (i.e., spatial distribution of aggregate, sand mastic and air voids) was obtained using the X-ray CT. The X-ray CT images provided exact locations of aggregate, sand mastic and air voids to develop 2D and 3D models. An experimental program was developed with a uniaxial compression test to measure the dynamic modulus of sand mastic and asphalt mixtures at different temperatures and loading frequencies. In the DEM simulation, the mastic dynamic modulus and aggregate elastic modulus were used as input parameters to predict the asphalt mixture dynamic modulus. Three replicates of a 3D DEM and six replicates of a 2D DEM were used in the simulation. The strain response of the asphalt concrete under a compressive load was monitored, and the dynamic modulus was computed. The moduli of the 3D DEM and 2D DEM were then compared with both the experimental measurements results. It was revealed that the 3D discrete element models successfully predicted the asphalt mixture dynamic modulus over a range of temperatures and loading frequencies. It was found that 2D discrete element models under predicted the asphalt mixture dynamic modulus.  相似文献   

11.
This paper systematically investigates the changes in asphalt concrete (AC) microstructure caused by full-scale accelerated pavement testing with a heavy vehicle simulator (HVS), using X-ray computed tomography images taken before and after HVS rutting tests. A viscoelastic micromechanical finite element modeling was also used to investigate effects of bitumen mastic and aggregate skeleton properties on shear resistance. The primary purpose was to determine the reasons behind the earlier failure of the rubberized gap graded AC mix used in the test compared to the polymer modified dense graded mix also included in the experiment. Shear related deformation appears to control the long term rutting performance of the test sections while densification was primarily an initial contributor at the very early stages of trafficking. A high concentration of aggregate interlock in the polymer modified mix, as a result of the dense gradation and larger aggregate sizes, appears to have resulted in greater dissipation of shear stresses and therefore greater shear resistance. The lack of this interlocking effect for the rubberized gap graded mix is proposed to have caused the earlier failure on HVS test sections.  相似文献   

12.
吴俊  杨新华  叶永 《工程力学》2012,29(10):244-248
利用Eshelby 等效夹杂理论研究了沥青混合料的单轴压缩蠕变行为。通过时间域内的Laplace 变换将问题线性化, 得到了沥青混合料的蠕变本构关系。开展了不同温度、应力水平条件下沥青砂的单轴压缩蠕变实验, 根据数据拟合了沥青砂四参量流变模型的模型参数。在此基础上, 预测了沥青混合料在不同温度、应力水平下的蠕变曲线, 分析了温度、应力水平对沥青混合料蠕变行为的影响。结果表明:在相同的应力水平下, 沥青混合料的应变和应变率都随温度的升高而增大, 并且在沥青软化点附近发生明显突变;在相同的温度下, 沥青混合料的应变和应变率都随加载应力的增加而增大。  相似文献   

13.
In this study, analytical modeling of the tensile strength of hot-mix asphalt (HMA) mixtures at low temperatures was developed. To do this, HMA mixtures were treated as a two-phase composite material with aggregates (coarse and fine) dispersed in an asphalt mastic matrix. A two-phase composite model, which was similar to Papanicolaou and Bakos's [J. Reinforced Plast. Compos. 11 (1992) 104] model with a particle embedded in an infinite matrix, was proposed. Unlike Papanicolaou and Bakos's model, an axial stress was introduced to the fiber end to consider the load transferred from the asphalt mastic the aggregate. Efforts were also made to consider the effect of aggregate gradation, asphalt mastic degradation, and interfacial damage between the aggregates and asphalt mastic matrix on the tensile strength of the HMA mixtures. Experimental investigations were conducted to validate the developed theoretical relations. A reasonable agreement was found between the predicted tensile strength and the experimental results at low temperatures. Parameters affecting the tensile strength of asphalt mixtures were discussed based on the calculated results.  相似文献   

14.
为探究自密实轻集料混凝土双轴力学性能,采用三轴试验机对其进行双轴压-压和双轴拉-压试验,得到不同工况下的应力-应变曲线及其破坏形态,通过提取应力-应变曲线峰值应力和峰值应变,并与相关文献普通混凝土与轻集料混凝土研究成果对比,分析自密实轻集料混凝土双轴力学性能。研究结果表明:双轴压-压工况下,当侧向压应力较低时,试件主要呈现剪切破坏形态;当侧向应力较高时,试件呈劈裂破坏形态。双轴拉-压工况下,试件主要呈劈拉破坏形态,与侧向应力无关。随着侧向压应力的提高,自密实轻集料混凝土主压应力相对比无侧向应力工况明显提高,峰值应力最大提高均值幅度为68.08%,主拉应力随侧向压应力的提高逐步降低,最大降低幅度为62.35%。应用Kupfer双轴受力破坏准则验证自密实轻集料混凝土受侧向应力影响变化规律较为保守,同时基于Kupfer提出自密实轻集料混凝土双轴力学性能破坏准则,所得到的破坏准则方程具有良好的适用性。   相似文献   

15.
The purpose of this study is to investigate the effect of horizontal aggregate distribution, i.e. aggregate distribution in horizontal cross sections, on the indirect tensile (IDT) test of asphalt mixtures. An index of aggregate homogeneity, used to evaluate the aggregate distribution in a two-dimensional (2D) cross section, was comprehensively described; the horizontal aggregate distribution was evaluated by the index. A microstructure-based discrete element model for predicting the IDT test results was established by a discrete element program called particle flow code in two dimensions (PFC2D). Based on this model and by loading horizontal cross sections of asphalt mixtures along different directions, the effects of horizontal aggregate distribution on the splitting strength and maximum horizontal stress with regard to an IDT test were numerically simulated by means of the discrete element method; the obtained results were verified by performing an actual IDT test. Results reveal that the splitting strengths and maximum horizontal stresses in the IDT test exhibit anisotropy. Furthermore, it is revealed that there is an insignificant correlation between the horizontal aggregate distributions and the average splitting strengths and average maximum horizontal stresses, as well as a significant correlation between the horizontal aggregate distributions and the variations in the splitting strengths and maximum horizontal stresses.  相似文献   

16.
The behaviour of polymers is known to be significantly influenced by the hydrostatic pressure in creep deformation or elastic-plastic deformation. The effect of the third stress invariant on the nonlinear viscoelastic deformation is much smaller than that of the hydrostatic pressure. In this paper, a constitutive equation for transient creep is proposed, which includes the effect of the hydrostatic pressure on the yield function. The creep and plastic strains or the creep strain rate converge to zero with increasing hydrostatic pressure. The proposed constitutive equation is in good agreement with the actual creep data of cellulose nitrate and cellulose acetate, under various combinations of superimposed tensile and hydrostatic loadings.  相似文献   

17.
The overall national emphasis on sustainability in pavement construction has led to the promotion of recycled materials such as reclaimed asphalt pavement (RAP) and reclaimed asphalt shingles. In general, the inclusion of these materials has led to reduced performance at low temperatures leading to thermal cracking. Previous research by the authors showed that the application of bio-binder from swine manure could alleviate the effect of RAP while improving the overall low temperature bulk viscoelastic and fracture properties of the asphalt mixture. The current paper expands on the previous research on bio-modified asphalt mixtures by investigating three additional bio-asphalts produced by introducing wood, miscanthus and corn stover based bio-oils to a neat asphalt. These bio-asphalt mixtures were introduced in both virgin and reclaimed asphalt pavement mixtures to evaluate interaction between the bio-oils and reclaimed asphalt pavement, with a focus on properties related to low temperature pavement performance. Low temperature characterization was conducted using disk-shaped compact tension fracture (DC(T)) and indirect tension (IDT) bulk viscoelastic characterization tests. The IDT test, completed in accordance with AASHTO T-322, evaluated the creep compliance of mixtures at 0, ?12 and ?24 °C to examine the ability of the mixture to relax thermal stress development. The DC(T) test was completed according to ASTM D-7313 to determine the fracture energy of the mixtures at ?12 °C. Test results demonstrate that the bio-asphalt mixtures had superior physical properties in terms of fracture resistance and creep compliance. Furthermore, the effect of increased RAP contents was less detrimental to low temperature properties in the bio-asphalt mixtures as compared to the reference hot-mix asphalt mixture.  相似文献   

18.
An analytical model is developed for the mechanical degradation of asphalt cement and mastic under repeated loading. The model is derived by applying the strain decomposition principle to consider linear viscoelastic, nonlinear viscoelastic, and damage mechanisms. The experimental processes to isolate the behaviors and the analytical functions used to model each are described. It is found that the Schapery type damage approach is capable of modeling the fatigue process of these materials once appropriate consideration is taken for their nonlinear viscoelastic responses. Fatigue in asphalt mastics is also found to occur due to physical damage occurring in the asphalt cement.  相似文献   

19.
配筋混凝土粘弹性参数的徐变试验研究   总被引:4,自引:1,他引:3  
为了便于分析配筋混凝土结构的粘弹性温度应力,本文将配筋混凝土看作为一种复合材料,通过试验来测定该材料的粘弹性参数。文中采用三分点加载的方式进行了配筋混凝土小梁的室内徐变试验,并对试验数据进行了回归分析。结果表明:1. 用配筋混凝土小梁的徐变试验来测定配筋混凝土材料的粘弹性参数是可行的;2. 荷载历史是徐变减小的重要原因,在计算温度应力时,徐变系数取值要考虑这一因素;3. 在本试验配筋条件下,配筋对徐变影响很小,配筋混凝土的徐变系数与素混凝土的徐变系数近乎相等。  相似文献   

20.
为探究自密实轻骨料混凝土压-剪复合受力力学性能,应用液压伺服机和材料压-剪试验机,对自密实轻骨料混凝土进行单轴受压、单轴劈裂抗拉和压-剪复合受力试验研究,通过试验得到不同加载工况下自密实轻骨料混凝土破坏形态和力-变形曲线,引用文献对普通混凝土和轻骨料混凝土压-剪复合受力研究数据,对比分析自密实轻骨料混凝土压-剪复合受力性能。研究结果表明:自密实轻骨料混凝土压-剪复合受力破坏形态与普通混凝土和轻骨料混凝土相类似,随着轴压比的提高,剪切破坏断面摩擦痕迹逐步明显,混凝土碎渣也逐步提高,自密实轻骨料混凝土剪切破坏强度、残余荷载和剪切破坏位移也随之提高;剪切破坏强度提高幅度高于普通混凝土和轻骨料混凝土,残余荷载受轴压比影响提高幅度高于普通混凝土,但略低于轻骨料混凝土。基于主应力空间结合普通混凝土和轻骨料混凝土压-剪试验数据,提出混凝土压-剪复合受力统一破坏准则,同时基于八面体应力空间,提出自密实轻骨料混凝土破坏准则,所提出的破坏准则具有良好的适用性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号