共查询到20条相似文献,搜索用时 15 毫秒
1.
J Horsfield A Penton J Secombe FM Hoffman H Richardson 《Canadian Metallurgical Quarterly》1998,125(24):5069-5078
During eye development in Drosophila, cell cycle progression is coordinated with differentiation. Prior to differentiation, cells arrest in G1 phase anterior to and within the morphogenetic furrow. We show that Decapentaplegic (Dpp), a TGF-&bgr; family member, is required to establish this G1 arrest, since Dpp-unresponsive cells located in the anterior half of the morphogenetic furrow show ectopic S phases and ectopic expression of the cell cycle regulators Cyclins A, E and B. Conversely, ubiquitous over-expression of Dpp in the eye imaginal disc transiently inhibits S phase without affecting Cyclin E or Cyclin A abundance. This Dpp-mediated inhibition of S phase occurs independently of the Cyclin A inhibitor Roughex and of the expression of Dacapo, a Cyclin E-Cdk2 inhibitor. Furthermore, Dpp-signaling genes interact genetically with a hypomorphic cyclin E allele. Taken together our results suggest that Dpp acts to induce G1 arrest in the anterior part of the morphogenetic furrow by a novel inhibitory mechanism. In addition, our results provide evidence for a Dpp-independent mechanism that acts in the posterior part of the morphogenetic furrow to maintain G1 arrest. 相似文献
2.
M Carmena MG Riparbelli G Minestrini AM Tavares R Adams G Callaini DM Glover 《Canadian Metallurgical Quarterly》1998,143(3):659-671
A number of lines of evidence point to a predominance of cytokinesis defects in spermatogenesis in hypomorphic alleles of the Drosophila polo gene. In the pre-meiotic mitoses, cytokinesis defects result in cysts of primary spermatocytes with reduced numbers of cells that can contain multiple centrosomes. These are connected by a correspondingly reduced number of ring canals, structures formed by the stabilization of the cleavage furrow. The earliest defects during the meiotic divisions are a failure to form the correct mid-zone and mid-body structures at telophase. This is accompanied by a failure to correctly localize the Pavarotti kinesin- like protein that functions in cytokinesis, and of the septin Peanut and of actin to be incorporated into a contractile ring. In spite of these defects, cyclin B is degraded and the cells exit M phase. The resulting spermatids are frequently binuclear or tetranuclear, in which case they develop either two or four axonemes, respectively. A significant proportion of spermatids in which cytokinesis has failed may also show the segregation defects previously ascribed to polo1 mutants. We discuss these findings in respect to conserved functions for the Polo-like kinases in regulating progression through M phase, including the earliest events of cytokinesis. 相似文献
3.
It is thought that the posterior expression of the 'selector' genes engrailed and invected control the subdivision of the growing wing imaginal disc of Drosophila into anterior and posterior lineage compartments. At present, the cellular mechanisms by which separate lineage compartments are maintained are not known. Most models have assumed that the presence or absence of selector gene expression autonomously drives the expression of compartment-specific adhesion or recognition molecules that inhibit intermixing between compartments. However, our present understanding of Hedgehog signalling from posterior to anterior cells raises some interesting alternative models based on a cell's response to signalling. We show here that anterior cells that lack smoothened, and thus the ability to receive the Hedgehog signal, no longer obey a lineage restriction in the normal position of the anterior-posterior boundary. Rather these clones extend into anatomically posterior territory, without any changes in engrailed/invected gene expression. We have also examined clones lacking both en and inv; these too show complex behaviors near the normal site of the compartment boundary, and do not always cross entirely into anatomically anterior territory. Our results suggest that compartmentalization is a complex process involving intercompartmental signalling; models based on changes in affinity or growth will be discussed. 相似文献
4.
5.
G protein signaling is a widely utilized form of extracellular communication that is mediated by a family of serpentine receptors containing seven transmembrane domains. In sensory neurons, cardiac muscle and other tissues, G protein-coupled receptors are desensitized through phosphorylation by a family of kinases, the G protein-coupled receptor kinases (GRKs). Desensitization allows a cell to decrease its response to a given signal, in the continued presence of that signal. We have identified a Drosophila mutant, gprk2(6936) that disrupts expression of a putative member of the GRK family, the G protein-coupled receptor kinase 2 gene (Gprk2). This mutation affects Gprk2 gene expression in the ovaries and renders mutant females sterile. The mutant eggs contain defects in several anterior eggshell structures that are produced by specific subsets of migratory follicle cells. In addition, rare eggs that become fertilized display gross defects in embryogenesis. These observations suggest that developmental signals transduced by G protein-coupled receptors are regulated by receptor phosphorylation. Based on the known functions of G protein-coupled receptor kinases, we speculate that receptor desensitization assists cells that are migrating or undergoing shape changes to respond rapidly to changing external signals. 相似文献
6.
7.
We describe mutations in the orb gene, identified previously as an ovarian-specific member of a large family of RNA-binding proteins. Strong orb alleles arrest oogenesis prior to egg chamber formation, an early step of oogenesis, whereas females mutant for a maternal-effect lethal orb allele lay eggs with ventralized eggshell structures. Embryos that develop within these mutant eggs display posterior patterning defects and abnormal dorsoventral axis formation. Consistent with such embryonic phenotypes, orb is required for the asymmetric distribution of oskar and gurken mRNAs within the oocyte during the later stages of oogenesis. In addition, double heterozygous combinations of orb and grk or orb and top/DER alleles reveal that mutations in these genes interact genetically, suggesting that they participate in a common pathway. Orb protein, which is localized within the oocyte in wild-type females, is distributed ubiquitously in stage 8-10 orb mutant oocytes. These data will be discussed in the context of a model proposing that Orb is a component of the cellular machinery that delivers mRNA molecules to specific locations within the oocyte and that this function contributes to both D/V and A/P axis specification during oogenesis. 相似文献
8.
9.
10.
ADP ribosylation factor (ARF) is thought to play a critical role in recruiting coatomer (COPI) to Golgi membranes to drive transport vesicle budding. Yeast strains harboring mutant COPI proteins exhibit defects in retrograde Golgi to endoplasmic reticulum protein transport and striking cargo-selective defects in anterograde endoplasmic reticulum to Golgi protein transport. To determine whether arf mutants exhibit similar phenotypes, the anterograde transport kinetics of multiple cargo proteins were examined in arf mutant cells, and, surprisingly, both COPI-dependent and COPI-independent cargo proteins exhibited comparable defects. Retrograde dilysine-mediated transport also appeared to be inefficient in the arf mutants, and coatomer mutants with no detectable anterograde transport defect exhibited a synthetic growth defect when combined with arf1Delta, supporting a role for ARF in retrograde transport. Remarkably, we found that early and medial Golgi glycosyltransferases localized to abnormally large ring-shaped structures. The endocytic marker FM4-64 also stained similar, but generally larger ring-shaped structures en route from the plasma membrane to the vacuole in arf mutants. Brefeldin A similarly perturbed endosome morphology and also inhibited transport of FM4-64 from endosomal structures to the vacuole. Electron microscopy of arf mutant cells revealed the presence of what appear to be hollow spheres of interconnected membrane tubules which likely correspond to the fluorescent ring structures. Together, these observations indicate that organelle morphology is significantly more affected than transport in the arf mutants, suggesting a fundamental role for ARF in regulating membrane dynamics. Possible mechanisms for producing this dramatic morphological change in intracellular organelles and its relation to the function of ARF in coat assembly are discussed. 相似文献
11.
D-type cyclins are induced in response to mitogens and are believed to control progression through the G1 phase of the cell cycle by activating their corresponding kinase partners (cyclin-dependent kinases). To investigate the function of individual D-type cyclins we have constructed rat fibroblast lines that allow controllable overexpression of a human cyclin D3 cDNA. Overexpression of cyclin D3 led to accelerated passage through G1 in actively proliferating cells with no effect on the overall population doubling time. In cells re-entering the division cycle from a quiescent state, cyclin D3 caused an even more dramatic advancement of S phase entry. Accelerated progression through G0/G1-to-S correlated with premature phosphorylation of the pRb tumor suppressor protein and its relatives, p107 and p130. We conclude that cyclin D3 can act as a rate-limiting G1 cyclin and that this effect involves, in part, the premature phosphorylation of critical substrates. 相似文献
12.
To understand the role of the spectrin-based membrane skeleton in generating epithelial polarity, we characterized the distribution of membrane skeletal components in Drosophila ovarian follicle cells and in somatic clones of mutant cells that lack alpha-spectrin. Immunolocalization data reveal that wild-type follicle cells contain two populations of spectrin heterodimers: a network of alphabeta heterodimers concentrated on the lateral plasma membrane and an alphabetaH population targeted to the apical surface. Induction of somatic clones lacking alpha-spectrin leads to follicle cell hyperplasia. Surprisingly, elimination of alpha-spectrin from follicle cells does not appear to prevent the assembly of conventional beta-spectrin and ankyrin at the lateral domain of the follicle cell plasma membrane. However, the alpha-subunit is essential for the correct localization of betaH-spectrin to the apical surface. As a consequence of disrupting the apical membrane skeleton a distinct sub population of follicle cells undergoes unregulated proliferation which leads to the loss of monolayer organization and disruption of the anterior-posterior axis of the oocyte. These results suggest that the spectrin-based membrane skeleton is required in a developmental pathway that controls follicle cell monolayer integrity and proliferation. 相似文献
13.
We have shown previously that de novo methylation activities persist in mouse embryonic stem (ES) cells homozygous for a null mutation of Dnmt1 that encodes the major DNA cytosine methyltransferase. In this study, we have cloned a putative mammalian DNA methyltransferase gene, termed Dnmt2 , that is homologous to pmt1 of fission yeast. Different from pmt1 in which the catalytic Pro-Pro-Cys (PPC) motif is 'mutated' to Pro-Ser-Cys, Dnmt2 contains all the conserved methyltransferase motifs, thus likely encoding a functional cytosine methyltransferase. However, baculovirus-expressed Dnmt2 protein failed to methylate DNA in vitro . To investigate whether Dnmt2 functions as a DNA methyltransferase in vivo , we inactivated the Dnmt2 gene by targeted deletion of the putative catalytic PPC motif in ES cells. We showed that endogenous virus was fully methylated in Dnmt2 -deficient mutant ES cells. Furthermore, newly integrated retrovirus DNA was methylated de novo in infected mutant ES cells as efficiently as in wild-type cells. These results indicate that Dnmt2 is not essential for global de novo or maintenance methylation of DNA in ES cells. 相似文献
14.
We have analysed the YJR043c gene of Saccharomyces cerevisiae, previously identified by systematic sequencing. The deletion mutant (yjr043cdelta) shows slow growth at low temperature (15 degrees C), while at 30 degrees C and 37 degrees C the growth rate of mutant cells is only moderately affected. At permissive and nonpermissive temperatures, mutant cells were larger and showed a high proportion of large-budded cells with a single duplicated nucleus at or beyond the bud neck and a short spindle. This phenotype was even more striking at low temperature, the mutant cells becoming dumbbell shaped. All these phenotypes suggest a role for YJR043C in cell cycle progression in G2/M phase. In two-hybrid assays, the YJR043c gene product specifically interacted with Pol1, the catalytic subunit of DNA polymerase alpha. The pol1-1 /yjr043cdelta double mutant showed a more severe growth defect than the pol1-1 single mutant at permissive temperature. Centromeric plasmid loss rate elevated in yjr043cdelta. Analysis of the sequence upstream of the YJR043c ORF revealed the presence of an MluI motif (ACGCGT), a sequence associated with many genes involved in DNA replication in budding yeast. The cell cycle phenotype of the yjr043cdelta mutant, the evidence for genetic interaction with Pol1, the presence of an MluI motif upstream and the elevated rate of CEN plasmid loss in mutants all support a function for YJR043C in DNA replication. 相似文献
15.
Cyclin B3 has been conserved during higher eukaryote evolution as evidenced by its identification in chicken, nematodes, and insects. We demonstrate that Cyclin B3 is present in addition to Cyclins A and B in mitotically proliferating cells and not detectable in endoreduplicating tissues of Drosophila embryos. Cyclin B3 is coimmunoprecipitated with Cdk1(Cdc2) but not with Cdk2(Cdc2c). It is degraded abruptly during mitosis like Cyclins A and B. In contrast to these latter cyclins, which accumulate predominantly in the cytoplasm during interphase, Cyclin B3 is a nuclear protein. Genetic analyses indicate functional redundancies. Double and triple mutant analyses demonstrate that Cyclins A, B, and B3 cooperate to regulate mitosis, but surprisingly single mutants reveal that neither Cyclin B3 nor Cyclin B is required for mitosis. However, both are required for female fertility and Cyclin B also for male fertility. 相似文献
16.
The purpose of the present studies was to investigate the role of epidermal growth factor (EGF) in the acquisition of estrogen (E) and progestin (P) responsiveness in the mouse mammary gland in vivo. Using the Elvax 40P implant technique to introduce bioactive molecules directly into the mammary gland to produce a localized effect, we have made the novel observation that EGF implanted into glands of pubertal mice followed by E treatment resulted in the precocious acquisition of E-inducible progesterone receptors (PR). In sexually mature mice, EGF implants alone were able to increase PR. A neutralizing antibody specific for EGF blocked E-dependent stimulation of end-bud development and PR induction. Furthermore, the antiestrogen ICI 182,780 blocked the EGF-induced stimulation end-buds and PR induction, indicating that these EGF effects are mediated via estrogen receptors (ER). Immunohistochemical analysis showed that the endogenous EGF content of mammary glands of mature mice was higher than pubertal mice, that E implants caused a localized increase in mammary gland EGF content in both pubertal and mature mice, and that in mature mice E caused an increase in stromal cell EGF content. We have previously shown that the acquisition of E-inducible PR can be modulated by mammary stroma, and the present results indicate that mammary stroma could modulate hormonal responsiveness through control of local growth factor concentration. Taken together, these results provide evidence that E-dependent responses of mouse mammary gland in vivo, such as end-bud proliferation and PR regulation, may be mediated by EGF through an ER-dependent mechanism. 相似文献
17.
The Src family of protein tyrosine kinases have been implicated as important regulators of cellular proliferation, differentiation and function. In order to understand further the role of Src family kinases, we have generated loss-of-function mutations in Src64, one of two Src family kinases known in Drosophila melanogaster. Animals with reduced Src64 function develop normally and are fully viable. However, Src64 female flies have reduced fertility, which is associated with the incomplete transfer of cytoplasm from nurse cells to the developing oocyte. Analysis of Src64 egg chambers showed defects in the ring canals that interconnect the oocyte and its 15 associated nurse cells. Src64 ring canals fail to accumulate the high levels of tyrosine phosphorylation that are normally present. Despite the reduced tyrosine phosphorylation, known ring canal components such as filamentous actin, a ring canal-specific product of the hu-li tai shao gene, and the kelch protein localize properly. However, Src64 ring canals are reduced in size and frequently degenerate. These results indicate that Src64 is required for the proper growth and stability of the ovarian ring canals. 相似文献
18.
BACKGROUND & AIMS: Hydrophobic bile acids have been implicated in the pathogenesis of cholestatic liver injury. The hypothesis that hydrophobic bile acid toxicity is mediated by oxidant stress in an in vivo rat model was tested in this study. METHODS: A dose-response study of bolus intravenous (i.v.) taurochenodeoxycholic acid (TCDC) in rats was conducted. Rats were then pretreated with parenteral alpha-tocopherol, and its effect on i.v. TCDC toxicity was evaluated by liver blood tests and by assessing mitochondrial lipid peroxidation. RESULTS: Four hours after an i.v. bolus of TCDC (10 mumol/100 g weight), serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels peaked, hepatic mitochondria showed evidence of increased lipid peroxidation, and serum bile acid analysis was consistent with a cholestatic injury. Liver histology at 4 hours showed hepatocellular necrosis and swelling and mild portal tract inflammation. Treatment with parenteral alpha-tocopherol was associated with a 60%-70% reduction in AST and ALT levels, improved histology, and a 60% reduction in mitochondrial lipid peroxidation in rats receiving TCDC. CONCLUSIONS: These data show that hepatocyte injury and oxidant damage to mitochondria caused by i.v. TCDC can be significantly reduced by pretreatment with the antioxidant vitamin E. These in vivo findings support the role for oxidant stress in the pathogenesis of bile acid hepatic toxicity. 相似文献
19.
20.
C Comayras C Tasca SY Pérès B Ducommun E Oswald J De Rycke 《Canadian Metallurgical Quarterly》1997,65(12):5088-5095
Cytolethal distending toxins (CDT) constitute an emerging heterogeneous family of bacterial toxins whose common biological property is to inhibit the proliferation of cells in culture by blocking their cycle at G2/M phase. In this study, we investigated the molecular mechanisms underlying the block caused by CDT from Escherichia coli on synchronized HeLa cell cultures. To this end, we studied specifically the behavior of the two subunits of the complex that determines entry into mitosis, i.e., cyclin B1, the regulatory unit, and cdc2 protein kinase, the catalytic unit. We thus demonstrate that CDT causes cell accumulation in G2 and not in M, that it does not slow the progression of cells through S phase, and that it does not affect the normal increase of cyclin B1 from late S to G2. On the other hand, we show that CDT inhibits the kinase activity of cdc2 by preventing its dephosphorylation, an event which, in normal cells, triggers mitosis. This inhibitory activity was demonstrated for the three partially related CDTs so far described for E. coli. Moreover, we provide evidence that cells exposed to CDT during G2 and M phases are blocked only at the subsequent G2 phase. This observation means that the toxin triggers a mechanism of cell arrest that is initiated in S phase and therefore possibly related to the DNA damage checkpoint system. 相似文献