首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relaxation times are reported from the transients observed during thermal conductivity eff and thermal diffusionk T * measurements in superfluid mixtures of3He in4He with a layer thickness of 1.81 mm. The experiments extend from 1.7 K toT and over a3He concentration range 10–6X<5×10–2. The agreement between the measured and the predicted from the two-fluid thermohydrodynamic equations is satisfactory forX>10–3 but deteriorates for smaller3He concentrations. This situation is similar to that for eff andk T * results and indicates that the transport properties in very dilute mixtures with layers of finite thickness are not well understood. ForX>10–3, the mass diffusion coefficientD iso for isolated3He in4He has been determined from and from eff measurements. There is an inconsistency by a constant numerical factor between these determinations. This problem might be related to the observations that in the superfluid phase, the relaxation times for different cell heightsh do not scale withh 2. FromD iso derived via the eff data, the3He impurity-roton scattering cross section is determined. Comparisons with previous work are made.  相似文献   

2.
Measurements of the average thermal conductivity exp hQ/T and of the thermal relaxation time to reach steady-state equilibrium conditions are reported in the superfluid phase for dilute mixtures of3He in4He. Hereh is the cell height,Q is the heat flux, andT is the temperature difference across the fluid layer. The measurements were made over the impurity range 2×10–9<X(3He)<3×10–2 and with heat fluxes 0.3<Q<160 µW/cm2. Assuming the boundary resistanceR b , measured forX<10–5, to be independent ofX over the whole range ofX, a calculation is given for exp. ForQ smaller than a well-defined critical heat fluxQ c (X) X 0.9, exp is independent of Q and can be identified with the local conductivity eff, which is found to be independent of the reduced temperature = (T–T)/T for –10–2. Its extrapolated value at T is found to depart forX10–3 from the prediction X –1 , tending instead to a weaker divergence X –a witha0.08. A finite conductivity asX tends to zero is not excluded by the data, however. ForQ >Q c (X), a nonlinear regime is entered. ForX10–6, the measurements with the available temperature resolution are limited to the nonlinear conditions, but can be extrapolated into the linear regime forX2×10–7. The results for exp(Q),Q c (X), and eff(XX) are found to be internally consistent, as shown by comparison with a theory by Behringer based on Khalatnikov's transport equations. Furthermore, the observed relaxation times (X) in the linear regime are found to be consistent forX>10–5 with the hydrodynamic calculations using the measured eff(X). ForX<10–5, a faster relaxation mechanism than predicted seems to dominate. The transport properties in the nonlinear regimes are presented and unexplained observations are discussed.  相似文献   

3.
The superfluid hydrodynamics of heat flow is examined for very small mass concentrationsc of3He in4He in an effort to better understand recent results for the effective heat conductivity eff, which appear to be in conflict with predictions. The full hydrodynamics contains a thermal boundary layer; within this layer the temperature and concentration gradients differ from those in the bulk fluid. An examination of finite heating effects based on the ansatz eff c p for smallc shows distinctly different behavior for experimental determinations of eff whenp<1,p=1, andp>1. Thus, finite heating can be used as a probe to evaluate the exponentp.  相似文献   

4.
An experimental study is presented for the thermal conductivity and the thermal relaxation for dilute mixtures of3He in4He with concentration 9×10–4X(3He)5×10–2 at saturated vapor pressure and in the normal phase near the superfluid transition. The conductivity results for are compared with predictions by Dohm and Folk from field-theoretic renormalization group(RG) theory. The conductivity s =[–1(T)––1(T)]–1, is compared with Ahlers' phenomenological arguments, and also with predictions by Dohm and Folk and by Onuki. The temperature difference transient T(t) across the fluid, measured as a function of timet after switching on and off the heat current, is analyzed. The thermal diffusion ratiok T and the mass diffusion coefficientD are obtained by fitting the calculated transient to the experimental one. The results are compared with the predictions that follow from the RG approach by Dohm and Folk. Very good agreement is obtained fork T. The transient is not very sensitive toD, and hence the determination is not accurate. Yet within the uncertainty, the deducedD also agrees with predictions. Appendices give (1) the corrections to from finite heat effects, (2) the calculation of the concentration susceptibility (X/) T,P , and (3) the calculation procedure for ,k T, andD using the RG approach of Dohm and Folk.  相似文献   

5.
We have investigated the magnetic susceptibility, , and the thermal conductivity, , in magnetic fields for the four-leg spin-ladder system La2Cu2O5 single crystal. The in a magnetic field parallel to the ladder exhibits a kink at 130 K in correspondence to the magnetic ordering. The along the ladder exhibits a peak at 25 K and a shoulder at 14 K, which are probably related to the thermal conductivity due to magnons, magnon, and that due to phonons, phonon, respectively. The perpendicular to the ladder, on the other hand, exhibits only one broad peak related to phonon. The observed large anisotropy of has been explained based upon the anisotropy of magnon.  相似文献   

6.
The response of a layer of superfluid mixture to an ac heat source,Q(t)=Q 0 exp(it), is determined. In the low-frequency regime, the temperature response at the heated side of a superfluid layer is essentially identical to that of an ordinary fluid having a thermal conductivity eff and a thermal diffusion coefficient 0 /2. Here eff is the effective conductivity of Khalatnikov, and 0 is the diffusion coefficient of Griffin. At much higher frequencies, the results are more complicated. The low-frequency regime is defined in terms of the second sound velocityu 2 by u 2 2 / 0 . The ac response function is valuable in a number of ways. It can be used to obtain the system response to more complicated time-dependent variations inQ such as step changes inQ. A knowledge of the response function in the low-frequency regime provides a mechanism for directly determining the Kapitza resistance in mixtures. Finally, a knowledge of the response function provides an additional opportunity to test two-fluid hydrodynamics. Alternative tests of superfluid hydrodynamics are of particular interest in light of recent experiments that show anomalous values for eff in the low 3 He concentration limit  相似文献   

7.
The specific heat under saturated vapor pressure of pure 4He and of six 3He-4He mixtures up to X = 0.545 was measured in the temperature range 3 × 10–6T-T ¦ <10–2 K. The critical exponents and along the path = are independent of X up to X = 0.545, where (= 34) is the difference between chemical potentials. If we take account of higher order terms, the exponent (= ) and the amplitude ratio A /A are independent of X up to X = 0.545. The values of and A /A are –0.023 and 1.090, respectively. The critical-tricritical crossover effect was observed for X = 0.545 and the boundary of crossover region closest to the critical region was at /T = (1–2) × 10–4, where is the distance ¦TT ¦ along the path = . This value is in good agreement with the estimated value by Riedel et al. But, remarkably, in the case of X = 0.439 this effect was not observed.  相似文献   

8.
We report ultrasonic dispersion and attenuation measurements near the liquid-gas critical point of 3He at frequencies from 0.5 to 5.0 MHz and densities from 0.89 c to 1.15 c . The singular part of the sound attenuation and the dispersion on the critical isochore c = 0.0414 g/cm3 are analyzed in terms of the Kawasaki-Mistura theory. If the Ornstein-Zernike order parameter correlation function is assumed in the analysis, good agreement with our data is achieved, except close to the critical temperature T cin the high-frequency region, where * = /D 1. Here D is the characteristic relaxation rate of the critical fluctuations. From a fit of the theory to our data, and assuming the inverse correlation length is expressed by = 0, where = (T–Tc)/Tc with = 0.63, we obtain 0 = (3.9 ± 0.4) × 109 m–1. It is found that a more realistic form of the correlation function, as proposed by Fisher and Langer and calculated by Bray, yields even poorer agreement with out data than does the classical Ornstein-Zernike form for * > 10. The same difficulties appear in the analysis of the available data for xenon. Thus, the present mode coupling theory is unable to satisfactorily describe the acoustic experiments on fluids near the liquid-vapor critical point over a large range of reduced frequencies *. In the appendix, we reanalyze previously reported ultrasonic data in 4He, taking into account the nonsingular term of the thermal conductivity. Using = 0.63, we obtain a good fit of the experiment to the theory in the hydrodynamic region with 0 = (5.5 ± 1) × 109 m–1.Supported by a grant from the National Science Foundation.  相似文献   

9.
The washboard frequency of the moving vortex lattice in untwinned YBa2 Cu3 O6.93 may be observed through mode-locking to an externally applied ac current of frequency ext. The interference between and ext results in jumps in the dc current-voltage characteristics when and ext are harmonically related1. The interference effect disappears in the vortex liquid state. The Hall conductivity xy below Tc in YBCO contains contributions2 from a positive quasiparticle (qp) term (H) and a negative vortex term (1/H). The qp term is surprisingly large well below Tc and implies a large gap anisotropy and a long qp mean free path (mfp). The thermal Hall effect3 xy is closely related to the qp xy; xy is produced by asymmetric scattering of qp by pinned vortices. The qp mfp at H = 0, extracted from xy and extended to low T by xy, increases remarkably from 90 Å at Tc to more than 0.5m at 22 K.  相似文献   

10.
The thermal conductivity of solid H2 and the NMR absorption signal of isolated o-H2 were measured simultaneously along isotherms 0.07<T<1.5 K as a function of time after a rapid cooldown from 2 K. The o-H2 concentration ranged from 3.4% to 0.4%, and the pressure was 90 atm. During the measurements, clustering of o-H2 particles occurred as seen from the changes both of the NMR signal amplitude and of with time t. The difference –1 = –1 ()– –1(0) between the thermal resistivity –1 (t=0) just after cool down and in equilibrium, –1 (), was found to change sign near 0.23 K, and this result is discussed with respect to previous experiments. The equilibrium resistivity attributed to the o-H2 impurities, , is derived and is compared with previous determinations and with predictions. An analysis of the equilibration process for –1 and for the NMR signal amplitude is presented. It shows that the characteristic times are of comparable but not equal magnitude. Comparison of the derived from NMR data atP=90 and 0 atm favors resonant ortho-para conversion over quantum tunneling as the leading mechanism for quantum diffusion.  相似文献   

11.
A recent formula for the heat transfer coefficient between 3He quasiparticles and phonons of a sintered metallic powder is evaluated using the phonon density of states of a microscopic model of a granular structure. The microscopic model describes a simple crystalline granular structure and contains extended modes only. When the dominant phonon wavelength is less than a typical grain size, possesses a low-temperature enhancement typical of a sintered metallic powder and over a limited range exhibits a linear variation with temperature.  相似文献   

12.
Measurements of the in-plane (ab) and out-of-plane (c) thermal conductivity for insulating cuprate crystals are discussed along with new measurements for YBa2Cu3O6, and PrBa2Cu3O6, where both ab and c are twice the magnitude previously reported for this material. An unusual temperature (T) dependence of ab in cuprates with apical oxygen indicates the onset of strong phonon damping for T < 200–250K. Along with dielectric and elastic anomalies reported in this regime, the data suggest the occurrence of a structural phase transition, involving rotations of the CuO polyhedra about an in-plane axis. The role of such local distortions in the thermal transport of superconducting compounds and the superconducting-state enhancement of ab are discussed.  相似文献   

13.
The flux flow viscosity coefficient b –1 (in units of 0 H c n –1 c –2) of vacuum-deposited indium thin films with low values (1.0–2.8) is measured at temperatures between 0.5T cand 0.98T cin the weak magnetic field region. At each temperature, b –1 decreases as increases for larger than 1.7. The decrease of b –1 with increasing is more rapid as the temperature increases. From an analysis of the present results as well as the existing data on intermediate- and high- superconducting alloys, the relation between b –1 and is established over a wide range of . The dependence of b –1 on is qualitatively explained by taking into account the contribution of the normal electron dissipation to the viscosity coefficient in the Bardeen-Stephen model.Financial support provided by the Fonds National Suisse de la Recherche Scientifique.On leave from the Department of Electronic Engineering, Faculty of Engineering, Kyushu Industrial University, Fukuoka, Japan.  相似文献   

14.
The superfluid density in 4 He was determined near T from the second-sound velocity as a function of TT and pressure. The critical exponent of the superfluid density was found to depend, even slightly, on the pressure. Furthermore, the fundamental length 0 in the coherence length = 0 [1–(T/T)]–' seemed to be proportional to the mean interatomic distance. The implications of the results are also discussed.This work was partly supported by The Ito Science Foundation and by The Nishina Memorial Foundation.  相似文献   

15.
The thermal conductivity and the associated relaxation time to reach steady-state conditions are reported for the normal phase of several very dilute mixtures of3He in4He (X<4 × 10–6) at saturated vapor pressure near T. The measurements were made over the reduced temperature range 2.5 × 10–6<<2×10–1, where (T–T)/T, and are representative for pure4He. The spacing between the cell plates was 0.147 cm. The systematic uncertainty in the conductivity data is estimated to increase from 2% for =0.2 to 4% for =3 × 10–6. The random scatter due to finite temperature resolution increases to 7% at the smallest . The data are in agreement within the combined uncertainty with recent ones by Tam and Ahlers (cell F, spacing 0.20 cm) and with previous ones in this laboratory taken with a different plate spacing. The thermal diffusivity coefficientD T = / C p obtained from is found to agree within better than 15% with the calculated one using data for , the density , and the specific heatC p . Measurements of the effective boundary resistivityR b in the superfluid phase are described.R b is found to depend on the thermal history of the cell when cycled up to 77 K and above. Also,R b shows the beginning of an anomalous increase for ¦¦10–4. The possible reasons for this anomaly are discussed, and their impact on the analysis of conductivity data in the normal phase is appraised.  相似文献   

16.
A cell for the simultaneous measurements of temperature and3He concentration gradients, induced by a heat currentQ across a fluid helium layer is described. This cell is operated over the temperature range 1.7T<2.5 K. Measurement of the anomalous boundary resistance Rb in superfluid4He(X(3He)2 ppb) near T for heat currents between 8 and 47 µW/cm2 are described. The results for both the weakly divergent and the heat-dependent, more strongly divergent contributions to R b are presented. The observed amplitude of the linear part is found to be larger than predictions by Onuki, by Ginzburg and Sobaynin and by Frank and Dohm, and also larger than recent data by Duncan and Ahlers (DA). These discrepancies are discussed in the light of the effective boundary area in the cell. The nonlinear part of R b is consistent with the data by DA. It is found that the maximum observed R b at the superfluid transition is independent ofQ. Analysis of the conductivity data of mixtures leads to the conjecture that R b will decrease will the addition of3He. Our measurement of both the effective thermal diffusion ratiok T * and of the thermal conductivity eff over the range 10–6<X<5×10–2 show departures from the predictions by Khalatnikov. In particular forX<10–3,k T * is found to be a function of X, and eff deviates from the predicted effX –1. This last result confirms measurements with a previous cell. In the appendices, determinations and tabulations of auxiliary thermodynamic derivatives, such as (V/X)T,P and (S/X)T,P are presented.  相似文献   

17.
Grain and phase growth in the two-phase Al-Cu alloys containing 6, 11, 1 7, 24 and 33 wt % Cu were investigated by annealing at 535 °C for 0.5–100 h. The grain and phase sizes of the phase are seen to be larger than that of the phase. The size of phase decreases whereas the size of phase increases with increasing copper content in the alloy. As such, the phase- and grain-size distributions are broader than the phase- and grain-size distributions, but the size range depends on annealing time and alloy composition. The grain sizes of the ,d , and ,d , phases can be related to the volume fraction of the phase,f , according to the equationd = 0.497d /f .  相似文献   

18.
Helium-3 nuclear spin relaxation times T 1, T 2, and T 1have been measured for 3He-4He solid mixtures at the exchange plateau region (~0.5K). The 3He concentrations X 3of the samples were 7.2, 2.9, 1.8, 1.4, 0.67, 0.65, and 0.22%, and their molar volumes varied between 19.9 and 20.9cm3/mole in hcp phase. The spectral density function J() for dipolar field fluctuations was determined in the low-frequency branch from T 1measurements and in the high-frequency branch from conventional T 1measurements. It was found that J() is given by J() = cJ()|3–4 + (1–c)J()|3–3, where J()|3–4 is the spectral density function due to the 3He-4He tunneling motions, and J()|3–3 is that due to the 3He-3He tunneling motions. Using the Torrey theory, the correlation frequency of the 3He-4He tunneling motions was evaluated from T 1data, and was found to be in good agreement with Landesman 's theory.Supported in part by the Japan Society for the Promotion of Science through a grant to Y.H.  相似文献   

19.
The temperature variations of the diffusion coefficientD(T), thermal diffusion ratio k T (T) and thermal conductivity (T) in a dilute solution of3He atom in two-dimensional liquid helium are evaluated explicitly by solving the kinetic equations via phonon-phonon, phonon-roton, roton-roton, impurityelementary excitation and impurity-impurity scatterings. In the low-temperature region, the main contributions toD(T) and (T) come from the interactions between phonons and impurities, while in the high-temperature region the interactions between impurities and whole elementary excitations contribute more strongly toD(T) and (T) than those of only elementary excitations. For a dilute solution, the thermal diffusion ratio k T (T), neglecting the internal mass counterflow, is much smaller than the effective thermal diffusion ratio k T * (T), which is a function of thermostatic properties. The effective thermal conductivity eff is much larger than the thermal conductivity and has different temperature dependence from the thermal conductivity. The behaviors of the two-dimensional diffusion coefficient and thermal conductivity are much like the bulk case, where they exhibit exponential decay with increasing temperature, although they are much smaller than those of the bulk case.  相似文献   

20.
The free energy of a superconductor in the mixed state is obtained to first order in 1–(T/T c) and – in terms of the solutions of the Ginzburg-Landau equations for = . The circular cell approximation is used to evaluate the lower critical field and the discontinuity in the magnetization at this field for those type-II materials displaying a first-order transition at the field of first flux penetration; the cases of both singly quantized and doubly quantized vortices are considered. The main result of the numerical calculations is that the critical value of for a first-order transition is identical to the critical value of for an attractive interaction between widely separated vortices.Supported in part by the National Research Council of Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号