首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we aimed to elucidate the effects of intrinsic nitric oxide (NO) on cardiac neural regulation. Twenty-two cats were anesthetized with 1.5% isoflurane and allocated to Group I (intact; n = 7), Group D (denervated baroreceptors and vagi; n = 8), or Group B (autonomic blockade with i.v. hexamethonium, propranolol, and atropine; n = 7). Cardiac sympathetic nerve activity (CSNA), mean arterial pressure (MAP), sinus heart rate (HR), and A-H and H-V intervals during pacing (150 bpm) were measured before and after i.v. administration of a NO synthase inhibitor, NG-nitro-L-arginine (L-NNA, 30 mg/kg) and after reversal with an excessive dose of L-arginine (300 mg/kg), before and during intermittent electrical stimulation of the posterior hypothalamus. L-NNA significantly increased MAP in Groups I and B, but not in Group D. L-NNA significantly decreased HR and lengthened A-H in Group I, but not in other groups. L-arginine further decreased HR and lengthened A-H unexpectedly. The reasons for these findings could not be determined in this study. L-NNA did not change CSNA. Hypothalamic stimulation did not potentiate L-NNA-induced changes in CSNA, hemodynamic variables, and atrioventricular conduction. In conclusion, intrinsic NO may modulate atrioventricular conduction and sinus rate through a vagal cholinergic, rather than a nonautonomic mechanism. Implications: Elucidating the roles of intrinsic nitric oxide (NO) on cardiac neural regulation is important. In intact, vagotomized, and baroreceptor-denervated or pharmacologically autonomic blockaded cats, an NO synthesis inhibitor was administered, and atrioventricular conduction and cardiac sympathetic neural discharge were measured. The results suggest a vagal cholinergic mechanism of intrinsic NO.  相似文献   

2.
Cyclosporine A (CsA) is an immunosuppressive agent that also causes hypertension. The effect of CsA on vascular responses was determined in Sprague-Dawley rats and isolated rat aortic rings. Male rats weighing 250 to 300 g were given either CsA (25 mg. kg-1. d-1) in olive oil or vehicle by intraperitoneal injection for 7 days. CsA administration produced a 42% increase (P<0.001) in mean arterial pressure (MAP) that reached a plateau after 3 days. Conversely, the levels of both nitrate/nitrite, metabolites of nitric oxide (NO), and cGMP, which mediates NO action, decreased by 50% (P<0.001) and 35% (P<0.001), respectively, in the urine. Thoracic aortic rings from rats treated with CsA and precontracted with endothelin (10(-9) mol/L) showed a 35% increase (P<0.001) in tension, whereas endothelium-dependent relaxation induced by acetylcholine (ACh, 10(-9) mol/L) was inhibited 65% (P<0.001) compared with that in untreated rats. This response was similar to that of endothelium-denuded aortic rings from untreated rats in which ACh-induced relaxation was completely abolished (P<0.001), but relaxation induced by S-nitroso-N-acetylpenicillamine (SNAP, 10(-8) mol/L) was unaffected (P<0.001). ACh-induced formation of both nitrate/nitrite and cGMP by both denuded and CsA-treated aortic rings was inhibited 95% (P<0.001) and 65% (P<0.001), respectively, compared with intact aortic rings. The effects of CsA were reversed both in vivo and in vitro by pretreatment with L-arginine (10 mg. kg-1. d-1 IP), the precursor of NO. There were no changes in MAP and tension in rats treated with L-arginine alone. In summary, CsA inhibits endothelial NO activity, with resulting increases in MAP and tension, and this inhibition can be overcome by parenteral administration of L-arginine.  相似文献   

3.
Acute and chronic administration of nitric oxide (NO) synthase (NOS) inhibitors increase mean arterial blood pressure (MAP) in rats but their hemodynamic effects in other species remain unknown. Moreover, the role of NO in the control of exercise-induced vasodilation is still debated. To answer these questions, six dogs were instrumented for the continuous measurement of cardiac output (CO, electromagnetic flow probe on the aorta), MAP (aortic catheter) and left ventricular pressure (Konigsberg gauge). Total peripheral resistance (TPR) was calculated as MAP/CO ratio and dP/dt was used as an index of cardiac inotropism. The dogs were treated from day 0 (D0) to 7 (D7) by the NOS inhibitor, N omega-nitro-L-arginine (L-NNA), 20 mg/kg/day (IV). Such a dose regimen resulted in NOS inhibition evidenced (a) in vivo by a reduction of the hypotensive responses to graded doses of acetylcholine and bradykinin, (b) ex vivo by a decrease in the relaxation of the femoral artery to acetylcholine (EC 50 = 2.2 +/- 0.6 10(-7) M after L-NNA vs 2.2 +/- 0.8 10(-8) M in controls). One month after instrumentation, the dogs being conscious, MAP measured at rest remained unchanged following one week L-NNA treatment (from 90 +/- 2 at D0 to 91 +/- 5 mmHg at D7). However, TPR increased (from 3,600 +/- 290 at D0 to 6,300 +/- 510 dyn.s.cm-5 at D7) and CO decreased (from 2.1 +/- 0.2 at D0 to 1.2 +/- 0.1 l/min at D7) (all p < 0.01), partly as the result of a marked bradycardia (from 100 +/- 7 at D0 to 60 +/- 7 beats/min at D7). L-NNA induced-increase in TPR was completely reversed by a bolus injection of nitroglycerin (10 micrograms/kg). During treadmill exercise (12 km/h), heart rate (251 +/- 9 at D0 vs 226 +/- 11 beats/min at D7), CO (6.3 +/- 0.9 at D0 vs 4.3 +/- 0.7 l/min at D7) and stroke volume remained significantly lower, and TPR significantly higher (1,662 +/- 278 at D0 vs 2,621 +/- 489 dyn.s.cm-5 at D7) after L-NNA than in the control state. Thus, NOS inhibition in resting conscious dogs by L-NNA markedly increases peripheral resistance but does not increase arterial pressure. In addition, L-NNA blunts both exercise-induced peripheral vasodilation and increase in cardiac output, despite metabolic vasodilation.  相似文献   

4.
The role of nitric oxide (NO.) in the neurotoxic effects of methamphetamine (METH) was evaluated using 7-nitroindazole (7-NI), a potent inhibitor of neuronal nitric oxide synthase. Treatment of mice with 7-NI (50 mg/kg) almost completely counteracted the loss of dopamine, 3,4-dihydroxyphenylacetic acid, and tyrosine hydroxylase immunoreactivity observed 5 days after four injections of 10 or 7.5 mg/kg METH. With the higher dose of METH, this protection at 5 days occurred despite the fact that combined administration of METH and 7-NI significantly increased lethality and exacerbated METH-induced dopamine release (as indicated by a greater dopamine depletion at 90 min and 1 day). Combined treatment with 4 x 10 mg/kg METH and 7-NI also slightly increased the body temperature of mice as compared with METH alone. Thus, the neuroprotective effects of 7-NI are independent from lethality, are not likely to be related to a reduction of METH-induced dopamine release, and are not due to a decrease in body temperature. These results indicate that NO. formation is an important step leading to METH neurotoxicity, and suggest that the cytotoxic properties of NO. may be directly involved in dopaminergic terminal damage.  相似文献   

5.
Previous reports have suggested that NO is an important mediator of the antihypertensive effects of renin-angiotensin system (RAS) inhibition. We examined the effects of the NO synthase inhibitor L-NNA on the hypotensive effects of captopril, the Ang II antagonist EXP 3174, or the renin inhibitor terlakiren. In sodium-depleted guinea pigs (GPs), L-NNA (3 mg/kg) increased MAP by 15-21% for at least 5 hours. L-NNA partially blocked the hypotensive effects of captopril (1 mg/kg, iv), but not those of EXP 3174 (1 mg/kg, iv) or terlakiren (3 mg/kg). In sodium-depleted rats, 10 mg/kg L-NNA (iv) increased MAP by 16-22%, and partially or fully blocked the hypotensive effect of EXP 3174 (1 mg/kg, iv) or captopril (3 mg/kg, iv), respectively. Thus, in contrast to the rat, NO in GPs appears to participate only in the hypotensive action of ACE inhibition and does not appear to be strongly involved in the hypotensive action of AII antagonism or renin inhibition. The involvement of NO in the hypotensive effects of RAS antagonists other than ACE inhibitors may be species-dependent.  相似文献   

6.
The effects of microinjection of a NO synthase inhibitor--N-nitro-L-arginine (L-NNA) and NO donor-sodium nitroprusside (SNP) into ventrolateral medulla on blood pressure (BP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were examined in anesthetized rats to define the role of L-arginine: NO pathway in the central regulation of BP and to explore the underlying mechanism. The results obtained were as follows: (1) Following microinjection of L-NNA into rostral ventrolateral medulla (RVLM), both of MAP and RSNA were increased. The effects lasted for more than 30 min and could be reversed by prior intravenous injection of L-arginine. (2) In response to microinjection of SNP into RVLM, MAP and RSNA were decreased, while HR showed no significant change. (3) During microinjection of L-NNA into caudal ventrolateral medulla (CVLM), MAP, HR and RSNA were decreased. (4) Upon injection of SNP into CVLM, MAP and RSNA were increased, but HR showed no significant change. The above-mentioned results indicate that the L-arginine: NO pathway may exhibit a modulatory action on the activity of ventrolateral medulla neurons.  相似文献   

7.
We tested the hypothesis that nitric oxide (NO) plays a role in CBF autoregulation in the brain stem during hypotension. In anesthetized rats, local CBF to the brain stem was determined with laser-Doppler flowmetry, and diameters of the basilar artery and its branches were measured through an open cranial window during stepwise hemorrhagic hypotension. During topical application of 10(-5) mol/L and 10(-4) mol/L N(omega)-nitro-L-arginine (L-NNA), a nonselective inhibitor of nitric oxide synthase (NOS), CBF started to decrease at higher steps of mean arterial blood pressure in proportion to the concentration of L-NNA in stepwise hypotension (45 to 60 mm Hg in the 10(-5) mol/L and 60 to 75 mm Hg in the 10(-4) mol/L L-NNA group versus 30 to 45 mm Hg in the control group). Dilator response of the basilar artery to severe hypotension was significantly attenuated by topical application of L-NNA (maximum dilatation at 30 mm Hg: 16 +/- 8% in the 10(-5) mol/L and 12 +/- 5% in the 10(-4) mol/L L-NNA group versus 34 +/- 4% in the control group), but that of the branches was similar between the control and L-NNA groups. Topical application of 10(-5) mol/L 7-nitro indazole, a selective inhibitor of neuronal NOS, did not affect changes in CBF or vessel diameter through the entire pressure range. Thus, endothelial but not neuronal NO seems to take part in the regulation of CBF to the the brain stem during hypotension around the lower limits of CBF autoregulation. The role of NO in mediating dilatation in response to hypotension appears to be greater in large arteries than in small ones.  相似文献   

8.
The present study investigated the role of nitric oxide (NO) in epileptogenesis and whether this role correlated with ionotropic glutamate receptor (IGR). Using a self-constructed NO-sensitive microelectrode (SNM), we observed the effect of nitric oxide synthase (NOS) inhibitors, NMDA and non-NMDA selective antagonists on penicillin(PEN)-treated hippocampal slices by simultaneously recording evoked field potentials and nitric oxide release from CA1 pyramidal neurons. 7-nitroindazole (7-NI),Nomega-nitro-L-arginine (L-NNA) and DL-2-amino-phospho-novaleric acid (APV), but not 6,7-dinitroquinoxaline-2,3 (1h,4h)-dione(DNQX), depressed NO release and partly reversed PEN's epileptogenetic effect, while APV + 7-NI + L-NNA did not display a further inhibitory effect. These findings suggest both NOS inhibitor and NMDA antagonist involve as anticonvulsant factors in epileptogenesis, providing direct evidence for NO release in response to NMDA receptor activation. The anticonvulsant effect of NMDA antagonist may ascribe to its action on NO release.  相似文献   

9.
In anesthetized intact rats, cerebral blood flow is autoregulated until mean arterial blood pressure (MAP) exceeds 150 mmHg. At higher pressures cerebral blood flow breaks through autoregulation and rapidly increases. However, interruption of the arterial baroreceptor reflex eliminates breakthrough of autoregulation. Thus, breakthrough may reflect active rather than passive vasodilatation. We, therefore, sought to determine if breakthrough depends upon synthesis of the vasodilator nitric oxide. Thirty-eight anesthetized adult male Sprague-Dawley rats were studied. In all, MAP was raised by slow i.v. infusion of phenylephrine. In rats pretreated with the nitric oxide synthase inhibitor L-nitroarginine (L-NA; 22 mg/kg i.v.) or with a combination of L-NA plus D-arginine (D-Arg; 240 mg/kg i.v.), breakthrough did not occur even when MAP exceeded 185 mmHg (L-NA) and 165 mmHg (D-Arg). In contrast, breakthrough occurred in rats treated with L-NA plus L-arginine (L-Arg; 240 mg/kg i.v.) and in rats whose basal vascular tone had been increased by pretreatment with arginine vasopressin prior to infusion of phenylephrine. Removal of sympathetic innervation to cerebral vessels attenuated, but did not eliminate, effects of L-NA on breakthrough. Thus, vasodilatation seen with breakthrough of autoregulation depends upon release of nitric oxide or a nitric oxide donor.  相似文献   

10.
BACKGROUND: The relaxatory effect of acetylcholine was investigated on the feline internal anal sphincter (IAS), in vitro. RESULTS: Acetylcholine (10, 30, 100, and 1000 microM) caused a concentration-dependent relaxation of the same magnitude in strips from the proximal and distal IAS. The antagonist of nitric oxide synthase, N omega-nitro-L-arginine (L-NNA; 1, 10, and 100 microM), in a concentration-dependent and stereospecific manner, blocked the acetylcholine-induced relaxation, leaving a residual response of 10-30%. The blocking effect of L-NNA (100 microM) could not be shown in tissues that had been incubated with the substrate for nitric oxide synthase, L-arginine (1 mM). CONCLUSIONS: The present results suggest that the acetylcholine-induced relaxation of the IAS to a major extent is due to an activation of nitrergic, inhibitory motor neurons to the IAS.  相似文献   

11.
We addressed the hypothesis that administration of nitric oxide synthase inhibitor, NG -nitro-L-arginine methyl ester (L-NAME) does not result in a sustained suppression of nitric oxide (NO) synthesis, because of a compensatory expression of inducible nitric oxide synthase (iNOS). L-NAME was administered in the drinking water (0.1-1.0 mg/ml) for 7 days to guinea pigs and rats. Nitric oxide synthesis was assessed by [1] ex vivo formation of nitrite in blood vessels and intestine [2] tissue levels of cGMP [3] iNOS gene expression by RT-PCR [4] NADPH diaphorase staining [5] direct assessment of NO release in tissue explants using a microelectrode/electrochemical detection system. Chronic L-NAME administration elevated intestinal cGMP and nitrite levels in guinea pigs (p < 0.05). In rats, intestinal nitrite levels were comparable in control and L-NAME treatment groups, whereas direct assessment of NO release defined a marked increase in the L-NAME group. Chronic L-NAME resulted in an induction of iNOS gene expression in rats and guinea pigs and novel sites of NADPH diaphorase staining in the intestine. We conclude that iNOS expression is responsible for a compensatory increase or normalization of NO synthesis during sustained administration of L-NAME.  相似文献   

12.
It has been shown that nitric oxide (NO) is synthesized in the central nervous system as well as in vascular endothelial cells. We recently reported that NO was involved in central cardiovascular regulation, modulated the baroreflex, and was involved in a reciprocal release with excitatory amino acids in the nucleus tractus solitarii (NTS) of rats. We also reported previously that adenosine increased the release of glutamate in the NTS. The purpose of the present study was to investigate the possible interaction of NO and adenosine in the NTS. Male Sprague-Dawley rats were anesthetized with urethane, and blood pressure was monitored intra-arterially. Unilateral microinjection of L-arginine (3.3 nmol/60 nL) into the NTS produced decreases in blood pressure and heart rate. Microinjection of adenosine (2.3 nmol/60 nL) also produced depressive and bradycardic effects. These cardiovascular effects were attenuated by prior administration of the specific adenosine receptor antagonist DPSPX (0.92 nmol). Similarly, prior administration of NO synthase inhibitor NG-monomethyl-L-arginine or NG-nitro-L-arginine methyl ester significantly attenuated the depressive and bradycardic effects of adenosine. These results demonstrate a reciprocal attenuation of adenosine receptor antagonist and NO synthase inhibitor on L-arginine and adenosine responses, respectively, in the NTS and implicate an interaction between NO and adenosine in central cardiovascular regulation.  相似文献   

13.
The role played by nitric oxide (NO) and carbon monoxide (CO) was explored in the adult male rat by determining whether antagonizing the activity of the enzymes responsible for the formation of these gases altered the response of the hypothalamic-pituitary-adrenal (HPA) axis to immune (cytokines) or nonimmune (mild electroshocks) signals. The arginine derivative Nomeganitro-L-arginine-methylester (L-NAME), which inhibits all three NO synthase (NOS) isoforms [inducible (i), endothelial (e) and neuronal (n)] significantly augments the ACTH response to blood-borne cytokines, but decreases it in rats exposed to shocks or other physico-emotional stresses. The effect of L-NAME in both models is mimicked by L-nitroarginine (L-NNA) and L-nitromethylarginine (L-NMMA), which block constitutive (e and n) forms of NOS, but not by aminoguanidine (which blocks iNOS) or 7-nitroindazole (which specifically blocks nNOS). Despite the ability of L-NAME to markedly augment the stimulatory effect of vasopressin on ACTH secretion, removal of this peptide does not interfere with the interaction between L-NAME and systemically administered interleukin-1beta (IL-1beta). In contrast, blockade of prostaglandin formation prevents both the stimulatory effect of IL-1beta on ACTH release, and its potentiation by L-NAME. In contrast to the investigation of the importance of endogenous NO, studies focused on the role of CO remain scarce. Our preliminary results suggest that while blockade of the formation of this gas decreases the ACTH response to various stimuli, it also significantly interferes with the effect of L-NAME in rats systemically administered cytokines, and further decreases the ACTH response to shocks in animals also injected with arginine analogs. These results indicate the possible presence of functional interactions between NO and CO in regulating the activity of the HPA axis. Our present working hypothesis is that in the presence of elevated circulating cytokine levels, endogenous NO acts presynaptically to inhibit the release of ACTH secretagogues from nerve terminals in the infundibulum. As the acute ACTH response to these immune proteins is believed to primarily depend on events taking place within the median eminence, blockade of NO formation results in exaggerated ACTH release. During exposure to shocks and other nonimmune stresses, on the other hand, increased ACTH secretion is primarily due to activation of hypothalamic neurons. In this case, because of the stimulatory influence of endogenous NO on hypothalamic perikarya that manufacture corticotropin-releasing factor (CRF) and/or of the afferents to these neurons, blockade of NOS activity blunts CRF production, and consequently ACTH release. What remains undetermined is the net effect of the opposite influences of NO during long-term exposure to immune or nonimmune stress. Finally, it is possible that the conflicting results reported by investigators who study the role of NO and CO in isolated cell preparations may reflect, at least in part, these opposite effects of NO on different elements of the HPA axis.  相似文献   

14.
The purpose of this study was to examine whether insulin's effect to vasodilate skeletal muscle vasculature is mediated by endothelium-derived nitric oxide (EDNO). N-monomethyl-L-arginine (L-NMMA), a specific inhibitor of NO synthase, was administered directly into the femoral artery of normal subjects at a dose of 16 mg/min and leg blood flow (LBF) was measured during an infusion of saline (NS) or during a euglycemic hyperinsulinemic clamp (HIC) designed to approximately double LBF. In response to the intrafemoral artery infusion of L-NMMA, LBF decreased from 0.296 +/- 0.032 to 0.235 +/- 0.022 liters/min during NS and from 0.479 +/- 0.118 to 0.266 +/- 0.052 liters/min during HIC, P < 0.03. The proportion of NO-dependent LBF during NS and HIC was approximately 20% and approximately 40%, respectively, P < 0.003 (NS vs. HIC). To elucidate whether insulin increases EDNO synthesis/release or EDNO action, vasodilative responses to graded intrafemoral artery infusions of the endothelium-dependent vasodilator methacholine chloride (MCh) or the endothelium-independent vasodilator sodium nitroprusside (SNP) were studied in normal subjects during either NS or HIC. LBF increments in response to intrafemoral artery infusions of MCh but not SNP were augmented during HIC versus NS, P < 0.03. In summary, insulin-mediated vasodilation is EDNO dependent. Insulin vasodilation of skeletal muscle vasculature most likely occurs via increasing EDNO synthesis/release. Thus, insulin appears to be a novel modulator of the EDNO system.  相似文献   

15.
We examined the influence of nitric oxide (NO) on normal and collateral cerebral blood flow after occlusion of the middle cerebral artery (MCA). Effects of NG-nitro-L-arginine (nitroarginine), an inhibitor of NO synthase, were examined during normotension and hypotension (arterial pressure, 50 mm Hg) in 49 anesthetized dogs. Following a craniotomy, a branch of the MCA was cannulated, and collateral-dependent tissue was identified using the shadow-flow technique. Regional cerebral blood flow was measured with microspheres, and pial artery pressure was measured with a micropipette. Intravenous nitroarginine reduced blood flow to normal cerebrum by approximately 40% (p < 0.05) during normotension and hypotension, with aortic pressure maintained constant after nitroarginine administration. Injection of nitroarginine during hypotension, without control of pressor effects, increased aortic and pial artery pressure approximately twofold. Concurrently, blood flow to normal cerebrum decreased (p < 0.05), while flow to collateral-dependent cerebrum increased (p < 0.05). Phenylephrine was infused during hypotension to increase arterial pressure to values similar to those achieved following nitroarginine. Blood flow to collateral-dependent cerebrum increased (p < 0.05), but flow to normal cerebrum was not altered during infusion of phenylephrine. Thus, inhibition of NO synthase during hypotension increases arterial pressure, decreases blood flow to normal cerebrum, and increases blood flow to collateral-dependent cerebrum. Phenylephrine also increases perfusion pressure and blood flow to collateral-dependent cerebrum, but in contrast to nitroarginine, it does not redistribute blood flow from normal cerebrum.  相似文献   

16.
The effects of the nitric oxide (NO) synthase inhibitor, N(omega)-nitro-L-arginine (L-NNA, 2.5-10 microg i.c.v.), and the NO synthesis precursor, L-arginine (L-Arg, 2.5-10 microg i.c.v.), on morphine-induced analgesia, and on morphine-induced tolerance and dependence were examined in mice. Administration of L-NNA diminished the morphine-induced analgesia. L-Arg pretreatment increased the analgesic effect of morphine. Repeated pretreatment (three times, at 24-h intervals) with L-NNA diminished both acute and chronic tolerance to morphine, whereas both the acute and the chronic morphine-induced tolerance increased after the repeated (three times, at 24-h intervals) administration of L-Arg. Neither L-NNA nor L-Arg affected the signs of morphine dependence, as assessed by naloxone (1 mg/kg, s.c.)-precipitated withdrawal. Our data suggest that increased NO synthesis potentiates morphine analgesia and enhances the development of morphine tolerance in mice.  相似文献   

17.
In a recent study, we found marked increases in nitric oxide (NO) production and endothelial and inducible NO synthase (eNOS and iNOS) expressions with calcium channel blockade in rats with chronic renal failure. This study was undertaken to determine whether enhanced NO production with calcium channel blockade is a direct effect of this therapy or a consequence of the associated hemodynamic and humoral changes. We tested the effects of a calcium channel blocker, felodipine (10(-5), 10(-6), and 10(-7) mol/L), on nitrate and nitrite (NOx) generation, Ca2+-dependent and -independent NOS activity, and eNOS and iNOS protein masses in proliferating and quiescent rat aortic endothelial cells in culture. Compared with vehicle alone, felodipine significantly increased NOx generation, Ca2+-dependent NOS activity, and eNOS protein mass in proliferating and quiescent endothelial cells. Felodipine did not modify the stimulatory action of 10% fetal calf serum on DNA synthesis (thymidine incorporation) and cell proliferation. Ca2+-independent NOS activity and iNOS protein expression were negligible and unaffected by calcium channel blockade. NOx production and NOS expression were greater in proliferating cells than in quiescent cells. Thus, calcium channel blockade upregulates endothelial NO production in vitro, confirming our previous in vivo study. This observation indicates that the reductions in cytosolic [Ca2+] and vasodilation with calcium channel blockade are not only due to inhibition of Ca2+ entry but also to an NO-cGMP mediated mechanism.  相似文献   

18.
We evaluated the effects of nitric oxide (NO) generators and endogenous production of NO elicited by substance P (SP) in the angiogenesis process. Angiogenesis was monitored in the rabbit cornea in vivo and in vitro by measuring the growth and migration of endothelial cells isolated from coronary postcapillary venules. The angiogenesis promoted in the rabbit cornea by [Sar9]-SP-sulfone, a stable and selective agonist for the tachykinin NK1 receptor, and by prostaglandin E1 (PGE1), was potentiated by sodium nitroprusside (SNP). Conversely, the NO synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME), given systemically, inhibited angiogenesis elicited by [Sar9]-SP-sulfone and by PGE1. Endothelial cells exposed to SNP exhibited an increase in thymidine incorporation and in total cell number. Exposure of the cells to NO generating drugs, such as SNP, isosorbide dinitrate, and glyceryl trinitrate, produced a dose-dependent increase in endothelial cell migration. Capillary endothelial cell proliferation and migration produced by SP were abolished by pretreatment with the NO synthase inhibitors N omega-mono-methyl-L-arginine (L-NMMA), N omega-nitro-L-arginine (L-NNA), and L-NAME. Exposure of the cells to SP activated the calcium-dependent NO synthase. Angiogenesis and endothelial cell growth and migration induced by basic fibroblast growth factor were not affected by NO synthase inhibitors. These data indicate that NO production induced by vasoactive agents, such as SP, functions as an autocrine regulator of the microvascular events necessary for neovascularization and mediates angiogenesis.  相似文献   

19.
Previous studies have shown that the injection of nitric oxide (NO) donating compounds into the dorsal periaqueductal gray region of the midbrain (PAG) decreases mean arterial pressure (MAP), while the injection of NO synthase (NOS) inhibitors increases MAP. In this study we used both in-vivo and in-vitro preparations and examined the effect of a NO donor and a NOS inhibitor on MAP, membrane properties, and synaptic activities in PAG neurons. We found that: (1) Injection of the NO donor hydroxylamine (HA) into the dorsal PAG decreased MAP, while the injection of the neuronal NOS (nNOS) inhibitor, 1-(2-trifluoromethylphenyl) imidazole (TRIM) increased MAP. These responses were consistent and site-specific. (2) HA-evoked hypotensive responses were mediated by PAG neuronal activity, because they were blocked by pre-injection with gamma-amino-butyric acid (GABA). (3) HA consistently increased the rate of observable synaptic events while TRIM consistently decreased the rate of observable synaptic events. (4) Bicuculline (BIC) and naloxone (NAL) blocked HA-evoked increases in the rate of observable inhibitory synaptic events. (5) Perfusion with sodium nitroprusside (SNP) and illumination with bright light consistently elevated rates of observable synaptic events, and SNP-evoked increases of excitatory synaptic events were blocked by pretreatment with glutamic acid antagonists. (6) PAG-medullary projecting neurons exhibited similar response patterns. The results of this study suggest that: (1) NO production within the PAG is a major component of PAG-mediated cardiovascular responses. (2) The effects of NO may be mediated in part by increased presynaptic vesicular release of glutamic acid, GABA, and enkephalin.  相似文献   

20.
BACKGROUND: The role of endogenous nitric oxide (NO) in the regulation of pulmonary vascular tone is complex. Inhibition of endogenous NO synthase, potentially through upregulation of guanylyl cyclase, results in an increase in potency of nitrovasodilators in the systemic circulation. This study considered whether inhibition of endogenous NO synthase would increase the potency of nitrovasodilators, but not of cyclic adenosine monophosphate-dependent vasodilators, in the pulmonary vasculature. METHODS: We used the isolated buffer-perfused rabbit lung. Preparations were randomized to receive either pretreatment with NG-nitro-L-arginine methyl ester (or L-NAME, an inhibitor of endogenous NO synthase) or no pretreatment. Stable pulmonary hypertension was then produced by infusing the thromboxane A2 analog U46619. The dose-response characteristics of two nitrovasodilators, sodium nitroprusside and nitroglycerin, and two nonnitrovasodilators, prostaglandin E2 and 5'-N-ethylcarboxamidoadenosine, were studied. RESULTS: Inhibition of endogenous NO synthase caused no significant changes in baseline pulmonary artery pressure but did significantly reduce the U46619 infusion rate required to produce pulmonary hypertension. Pretreatment with L-NAME (vs. no L-NAME) resulted in significantly lower values of the log median effective dose with sodium nitroprusside and nitroglycerin. In contrast, pretreatment with L-NAME resulted in no changes in the dose-response characteristics of the cyclic adenosine monophosphate-mediated, NO-independent vasodilators prostaglandin E1 and 5'-N-ethylcarboxamidoadenosine. CONCLUSIONS: These data suggest that endogenous NO synthase is not an important regulator of basal pulmonary tone in this model but is an important modulator of pulmonary vascular responses to vasoconstriction and to nitrovasodilators. The pulmonary vasodilator effects of nitrovasodilators, but not of nonnitrovasodilators, may depend on the level of activity of NO synthase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号