首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钨基高密度合金的静液挤压形变强化研究   总被引:3,自引:0,他引:3  
采用静液挤压工艺对91W-Ni-Fe合金进行了静液挤压变形强化,研究了91钨合金经静液挤压变形之后其显微组织、力学性能与挤压变形量之间的关系.结果表明:钨颗粒长径比随挤压变形量的增大而增大,钨颗粒的有效连接度随挤压变形量的增大而减小;钨合金的强度随挤压变形量的增大而增加,其增加的幅度随挤压变形量的增大而减小,而延伸率和断面收缩率则随挤压变形量的增大而不断下降.  相似文献   

2.
镁合金是目前金属结构材料中最轻的材料,挤压变形是镁合金变形最常用的方法,在提高镁合金综合性能方面具有显著的作用。综述了镁合金挤压变形的传统挤压方法和非传统挤压方法,其中传统挤压方法包括正挤压、反挤压、等通道转角挤压等,非传统挤压方法包括等通道转角膨胀挤压、复合挤压、连续变截面直接挤压等;介绍了挤压变形在制备铝/镁合金复合材料等方面取得的研究进展;分析了不同挤压变形方法在细化镁合金晶粒、提高力学性能等方面的作用和机理。提出采用创新的挤压变形方法,制备出不仅具有优异的力学性能,而且兼备较高的抗腐蚀性能的铝/镁合金复合材料,将是镁合金挤压变形技术未来发展的趋势。  相似文献   

3.
径向式CONFORM连续挤压变形的研究   总被引:1,自引:0,他引:1  
根据径向式CONFORM连续挤压变形的特点,首次对径向式CONFORM连续挤压的变形进行了分区;分析了径向式连续挤压变形的四个工艺参数,提供了基本挤压变形区长度的计算值和实验结果。  相似文献   

4.
在Deform-3D软件中根据连续挤压工艺中各主要模块建立连续挤压变形模型,对铜镁合金棒料的连续挤压变形过程进行数值模拟,重点分析了连续挤压过程中轧制变形区、镦粗变形区、扩展成形区和定径挤压成形区的晶粒度变化规律。将数值模拟结果与试验结果进行对比分析发现:铜镁合金棒料在挤压轮槽摩擦力的驱动下,一直处在流动变形过程中,且变形程度大、变形温度高、停留时间短,大部分材料发生动态再结晶后晶粒未长大;经过各主要变形区后的最终挤压成形的铜镁合金板材的晶粒得到极大细化,其相关力学性能得到改善。  相似文献   

5.
通过触变挤压模具,对半固态AZ61触变挤压与常规态挤压进行试验,研究了不同成形工艺参数对变形力的影响,并对比了触变挤压数值模拟与试验的差别。结果表明,在触变挤压变形时,挤压温度越高,变形力越小;半固态镁合金材料变形抗力小,应力分布均匀。模拟结果和触变挤压实验基本吻合.说明数值模拟可以为生产工艺实践提供指导。  相似文献   

6.
铝型材挤压系数的选择沈阳新光动力机械公司苏德权,赵云禄,藏学府一、铝型材挤压系数及其影响因素1.铝型材挤压系数在铝型材挤压技术中,通常以挤压系数或变形程度来表示金属变形量。挤压筒断面积与制品原断面积之比称为挤压系数λo材料变形前后断面积变化的绝对量与...  相似文献   

7.
等通道弯角挤压工艺是制备块体超细晶粒材料的重要方法之一.由于等通道弯角单道次挤压获得的挤压件变形分布不均匀,因此,在等通道弯角挤压细化晶粒工艺中必须寻求较好的工艺路线,以避免挤压件变形的不均匀性.通过设计复杂模具型腔模拟了多弯角挤压变形过程,获得了挤压工艺载荷-行程曲线,得出了等通道弯角挤压在不同工艺路线下对应挤压件的变形分布均匀程度,为实验研究圆形挤压件等通道弯角挤压工艺提供可靠的工艺参数和较好的工艺路线.  相似文献   

8.
对镁合金正挤压-扭转成形进行了工艺参数的有限元模拟,分析了扭转剪切变形对AZ31镁合金在成形过程中等效应变和挤压力的影响。结果表明:随着挤压温度的降低,挤压速度和摩擦系数的升高,坯料所获得的等效应变显著升高。正挤压-扭转变形可以显著提高坯料变形过程的等效应变,并改善变形的均匀性。经正挤压-扭转变形后,AZ31镁合金的塑性应变高达4.5。工艺参数的有限元分析能为AZ31镁合金正挤压-扭转变形的实际生产提供重要参考。  相似文献   

9.
双孔模型材挤压过程的有限元分析   总被引:2,自引:0,他引:2  
本文采用大变形弹塑性有限元理论 ,对双孔模型材挤压成形过程进行了有限元分析。模拟了双孔模非对称角铝型材挤压变形过程 ,获得了挤压变形时网格畸变、流速、应力和应变分布 ,展示了型材挤压件变形不均匀细节。并与单孔模型材挤压过程进行了比较 ,发现双孔模[1] 挤压时 ,变形体内存在两个互为相反方向的涡流场 ,它们相互抵消 ,从而可以消除型材挤压过程中产生的扭拧、波浪、弯曲等缺陷。为提高挤压件质量 ,优化设计多孔型材挤压模以及制定合理的工艺 ,提供了理论依据  相似文献   

10.
AZ61镁合金半固态触变挤压成形工艺研究   总被引:2,自引:0,他引:2  
设计并制造触变挤压模具.进行了高固相率半固态AZ61镁合金触变挤压和常规挤压实验,研究了不同成形工艺参数对变形力的影响.结果表明,在触变挤压变形时,挤压温度越高,变形力越小;挤压速度越快,变形力越大.采用建立的半同态AZ61镁合金的本构关系,对半固态AZ61触变挤压成形进行了数值模拟,通过对触变挤压实验和数值模拟结果的对比可知.二者拟合的较好.  相似文献   

11.
静液挤压93W合金变形与断裂研究   总被引:4,自引:0,他引:4  
对静液挤压93W合金的微观组织、力学性能、变形与断裂特征进行了分析研究。结果表明:钨合金的强度随挤压变形量的增大而增加,其增加的幅度随挤压变形量的增大而减小,而延伸率则随挤压变形量的增大而减小;变形起始于粘结相,合金的变形属于典型的双相协调变形;裂纹萌生于钨.钨界面之间;静液挤压态钨合金的拉伸断口上钨颗粒解理断裂的比例明显高于未变形态。  相似文献   

12.
采用分离式霍普金森拉杆及压杆装置,研究挤压态AZ31镁合金高速变形下的各向异性及拉压不对称性,并从微观变形机制的角度探讨具有强烈初始基面织构的挤压态镁合金各向异性及拉压不对称性产生的原因。结果表明:在高速变形条件下,依据加载方向及应力状态挤压态AZ31镁合金的拉伸行为表现出很强的各向异性,但压缩行为的各向异性不明显;在挤压方向表现出很强的拉压不对称性,而在垂直于挤压方向的拉压不对称性很低。挤压态AZ31镁合金宏观上的各向异性及拉压不对称性是由于不同的微观变形机制所引起的。沿挤压方向拉伸的主要变形机制为柱面滑移,沿垂直于挤压方向拉伸及压缩的主要变形机制为锥面滑移;沿挤压方向压缩时初始变形机制为拉伸孪晶,当变形量为0.08(8%)左右时由于孪晶消耗殆尽,变形变而以滑移的方式进行。  相似文献   

13.
轴承钢变形抗力大,用筒形坯料挤压内齿圈可减小变形程度、挤压成形力、模具弹性变形量、金属流动量及模具的磨损量,提高挤压成形的精度。  相似文献   

14.
采用数值模拟的方法分析单道次纯钨闭塞式双通道等径角挤压工艺的变形特点,并对比等径角挤压工艺和双通道等径角挤压工艺经过Bc路径4道次变形后的应变积累和分布特点。同时,为验证有限元模拟的准确性,开展了物理实验。结果表明,闭塞式双通道等径角挤压变形过程可分为初始阶段、镦粗成形阶段、剪切变形阶段和最终成形阶段。3种工艺经4道次变形后均发生较大的应变积累,但是由于闭式模膛对试样头部的镦粗作用,闭塞式双通道等径角挤压经过4道次变形后等效应变量最大,且等效应变分布最均匀。通过对模具应力的分析,闭塞式双通道等径角挤压和双通道等径角挤压工艺可以有效解决等径角挤压工艺冲头偏载问题,且试样经闭塞式双通道等径角挤压变形后具有较大的静水压力,提高了纯钨塑性,有利于进行多道次变形。闭塞式双通道等径角挤压工艺变形后的试样可分为4个区域:剪切变形区、伸长变形区、头部小变形区和尾部未变形区。  相似文献   

15.
研究了450℃时挤压成形AZ91D镁合金管材组织和性能特点,分析了该温度下的合金挤压变形机制,挤压比(变形程度)对管材组织和性能的影响,并探讨了其挤压变形的强化及其机理,实验表明,挤压变形使得AZ91D的性能较铸态有较大提高,且随着挤压比的增加,管材的塑性降低,强度先增加后降低,在挤压比为7.125时存在峰值,达到了最佳的强化效果。  相似文献   

16.
采用数值模拟和实验研究方法分析圆形纯铝挤压件多道次等通道弯角挤压工艺,发现单道次挤压获得的挤压件的变形分布沿挤压件中心横截面竖直方向变形分布不均匀.通过节点映射法实现各工艺路线的多道次挤压,不同的工艺路线对应的多道次挤压变形分布具有明显差异.多道次挤压后晶粒得到显著细化,变形后晶粒结构较挤压前的退火等轴晶粒大为不同,而且各工艺路线的晶界取向也各不相同,其中旋转90.挤压能够获得大角度晶界分布的等轴晶粒试样,实验结果与有限元分析结果十分吻合.  相似文献   

17.
Al-5Ti-B合金等径角挤压变形过程的数值模拟   总被引:1,自引:0,他引:1  
运用有限元模拟等径角挤压过程(ECAP),分析了试样的变形条件与模具的受力状态和金属的流动规律。材料的变形主要集中在模具两个通道的拐角处,变形梯度较大。在ECAP过程中不可避免产生末端效应,因此试样应该足够长,以便能够产生一个稳定变形区,从而获得良好的挤压效果。挤压速度对等径角挤压的影响不大,考虑到挤压效率的影响,应采用较高的挤压速度。  相似文献   

18.
挤压方法是工业生产断面形状复杂的制品的一个主要方法。但是,报导分析这种挤压的资料不多。虽然通常采用轴对称形状的铸锭进行挤压,但是挤压所发生的数学问题不是轴对称的,而是三维塑性流变中的某个问题。使金属变形所需要的能量与变形量、变形速度和变形温度有关。挤压时,这三个变量只有变形量保持不变,如果要控制挤压过程,就需要一个数学模型。最有效的分析方法是Ziencewicz和Godbole提出的。这种方法采用了等参数元的限元分析模型,  相似文献   

19.
Mg-Mn-RE合金挤压和锻造变形后的组织与力学性能   总被引:1,自引:1,他引:0  
对Mg-Mn-RE合金进行挤压和锻造变形处理,研究不同变形方式对其显微组织及力学性能的影响.结果表明:合金挤压变形过程中发生了动态再结晶,晶粒明显细化,挤压变形后硬度、抗拉强度、屈服强度和伸长率相对于铸态都有所提高,分别为68HV、254.9 MPa、190.5 MPa和26%;室温锻造变形后,晶粒扭曲变形,稀土化合物呈弥散均匀分布,硬度相对于挤压变形后有所提高,相对变形量为28%时,合金硬度为101 HV.  相似文献   

20.
通过对双通道等径角挤压变形过程的数值模拟,获得了不同路径4个道次各变形区的等效应变分布图,分析了挤压试样变形不均匀现象及其形成原因。结果表明,双通道等径角挤压中存在4种变形区,其中与冲头接触的区域应变值几乎保持挤压前的水平,该区域的存在是造成试样变形不均匀的主要原因。多道次挤压中试样的均匀性不仅与旋转方式有关,还与试样的放置方式有关。采用A路径的试样应变均匀性优于B路径;采用A路径进行挤压,在2道次挤压后试样左右剪切变形区等效应变呈现一端大一端小的分布状态,在3、4道次挤压中采取大+小剪切变形区处于冲头一侧的放置方式,试样等效应变的均值最高;采取小+大剪切变形区处于冲头一侧的放置方式,制备试样等效应变分布最为均匀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号