首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of extended cold or cold-acid storage of Escherichia coli O157:H7 on subsequent acid tolerance, freeze-thaw survival, heat tolerance, and virulence factor (Shiga toxin, intimin, and hemolysin) expression was determined. Three E. coli O157:H7 strains were stressed at 4 degrees C in TSB or pH 5.5 TSB for 4 weeks. The acid (TSB [pH 2.0] or simulated gastric fluid [pH 1.5]) tolerance, freeze-thaw (-20 degrees C to 21 degrees C) survival, and heat (56 degrees C) tolerance of stressed cells were compared with those of control cells. The beta-galactosidase activities of stressed and control cells containing a lacZ gene fusion in the stx2, eaeA, or hlyA gene were determined following stress in TSB or pH 5.5 TSB at 37 degrees C and in the exponential and stationary phases. Cold and cold-acid stresses decreased acid tolerance (P < 0.05), with a larger decrease in acid tolerance being observed after cold stress than after cold-acid stress (P < 0.05). Cold stress increased freeze-thaw survival for all three strains (P < 0.05). Prior cold or cold-acid stress had no effect on virulence factor production (P > 0.05), although growth in acidic media (pH 5.5) enhanced eaeA and hlyA expression (P < 0.05). These results indicate that the prolonged storage of E. coli O157:H7 at 4 degrees C has substantial effects on freeze-thaw tolerance but does not affect subsequent virulence gene expression.  相似文献   

2.
3.
The resistance of three strains of Escherichia coli O157:H7 in their stationary growth phase to starvation (24 h in water at 37 degrees C) followed by a heat treatment (56 degrees C for up to 90 min) was determined. Starvation was found to increase significantly the resistance of two strains (NCTC 12079; eae+, VT1+, VT2+, and ATCC 43889 eae+, VT2+) but not the remaining strain (ATCC 43890 eae+, VT1+). Strain NCTC 12079 (only one tested) was shown to retain all of the three virulence factors after the two stresses. De novo protein synthesis was shown to be required for heat resistance. Evidence using an rpoS mutant indicated a central role for this gene in inducing heat resistance after a starvation stress. It is hoped that this work will contribute to more accurate risk assessments in certain food processing operations.  相似文献   

4.
The effect of sublethal exposure to peroxyacetic acid (PAA) sanitizer on adaptation to peroxidative stress and development of thermal cross-resistance was investigated in Escherichia coli O157:H7. Acute sublethal PAA sanitizer exposure was used to represent a contact scenario. Cultures were grown in Trypticase soy-yeast extract broth. Acute treatment cultures were pretreated with 0.1% PAA, then all cultures were challenged at either 80 mM H202 or 54 degrees C. Acute and peroxide control cultures showed substantially increased peroxidative tolerance (D80mM > 2 h) versus negative control cultures not exposed to sanitizer (D80mM = 0.19+/-0.03 h). The inactivation rate of the acetic acid control (D80mM = 0.21+/-0.05 h) was similar to the negative control rate. Acute (D54 degrees C = 0.55+/-0.07 h) cultures did not exhibit increased thermal resistance versus the control (D54 degrees C = 0.54+/-0.07 h). Thermal injury was determined as difference in D54 degrees C value (deltaD54 degrees c) obtained on pyruvate and deoxycholate media. Thermal-induced injury was not observed in either control (deltaD54 degrees C = 0.04 h) or acute (deltaD54 degrees C = 0.05 h) cultures.  相似文献   

5.
This study was conducted to compare thermal inactivation of stress-adapted and nonadapted Escherichia coli O157:H7 in nonintact beef moisture enhanced with different brine formulations and cooked to 65°C. Coarsely ground beef was mixed with acid, cold, heat, starvation, or desiccation stress-adapted or nonadapted rifampin-resistant E. coli O157:H7 (eight-strain mixture, 5 to 6 log CFU/g) and a brine solution for a total moisture enhancement level of 10%. The brine treatments included distilled water (control), sodium chloride (0.5% NaCl) plus sodium tripolyphosphate (0.25% STP), or NaCl + STP combined with cetylpyridinium chloride (0.2% CPC), lactic acid (0.3% LA), or sodium metasilicate (0.2% SM). The treated meat was extruded into bags (15 cm diameter), semifrozen (-20°C for 4.5 h), and cut into 2.54-cm (1-in.)-thick portions. Samples were individually vacuum packaged, frozen (-20°C for 42 h), and tempered at 4°C for 2.5 h before cooking. Partially thawed (-1.8 ± 0.4°C) samples were pan broiled to an internal temperature of 65°C. Pathogen counts of partially thawed (before cooking) samples moisture enhanced with brines containing CPC, LA, or SM were 0.7 to 1.1, 0.0 to 0.4, and 0.2 to 0.4 log CFU/g, respectively, lower than those of the control. Compared with microbial count reductions obtained after pan broiling of beef inoculated with nonadapted E. coli O157:H7 cells, count reductions during cooking of meat inoculated with cold and desiccation stress-adapted, acid stress-adapted, and heat and starvation stress-adapted cells indicated sensitization, cross protection, and no effect, respectively, of these stresses on the pathogen during subsequent exposure to heat. Among all stressed cultures, CPC-treated samples (0.8 to 3.6 log CFU/g) and LA-treated samples (0.8 to 3.5 log CFU/g) had the lowest numbers of E. coli O157:H7 survivors after cooking.  相似文献   

6.
The DNA band patterns generated by polymerase chain reaction (PCR) using the du2 primer and template DNAs from various strains of Escherichia coli and non-E. coli bacteria were compared. Among three to five prominent bands produced, the three bands at about 1.8, 2.7, and 5.0 kb were detected in all of the E. coli O157 strains tested. Some nonpathogenic E. coli and all pathogenic E. coli except E. coli O157 showed bands at 1.8 and 5.0 kb. It seems that the band at 2.7 kb is specific to E. coli O157. Sequence analysis of the 2.7-kb PCR product revealed the presence of a DNA sequence specific to E. coli O157:H- and E. coli O157:H7. Since the DNA sequence from base 15 to base 1,008 of the PCR product seems to be specific to E. coli O157, a PCR assay was carried out with various bacterial genomic DNAs and O157-FHC1 and O157-FHC2 primers that amplified the region between base 23 and base 994 of the 2.7-kb PCR product. A single band at 970 bp was clearly detected in all of the strains of E. coli O157:H- and E. coli O157:H7 tested. However, no band was amplified from template DNAs from other bacteria, including both nonpathogenic and pathogenic E. coli except E. coli O157. All raw meats inoculated with E. coli O157:H7 at 3 x 10(0) to 3.5 x 10(2) CFU/25 g were positive both for our PCR assay after cultivation in mEC-N broth at 42 degrees C for 18 h and for the conventional cultural method.  相似文献   

7.
EHEC O157:H7难以控制的原因之一是该菌对酸的耐受性。将国内6株EHEC O157:H7在不同pH的LB溶液中振荡培养,每隔1h计数,实验结果表明了6株菌耐受时间相比较存在差异,菌株97063较其它菌株在pH2.5条件下,耐受时间长超过了29h。本实验旨在对EHEC O157:H7的国内分离株耐酸性进行研究,为控制EHEC O157:H7的感染提供科学依据。检验检疫部门、食品卫生部门等应高度重视对酸性食品中大肠杆菌O157:H7的检验。  相似文献   

8.
本实验探究较长时间酸应激对大肠杆菌O157:H7生物菌膜形成的影响。首先采用微孔板联合结晶紫染色法比较大肠杆菌O157:H7不同菌株黏附性能差异,分析不同黏附力菌株菌膜形成曲线,进而选择代表菌株采用平板计数法分析在较长时间酸应激时其菌膜的形成规律,最后采用共聚焦激光扫描显微镜(confocal laser scanning microscope,CLSM)比较黏附力不同的菌株在酸性环境下菌膜形态结构变化。结果表明,14 株菌株黏附能力有差异;不同黏附力菌株均在2 h开始产生黏附现象,但菌膜形成曲线有明显差异。以中等黏附力菌株ATCC43895作为代表菌株进行酸应激实验,结果表明pH值越低菌膜形成量越少,pH值相同时乳酸对浮游菌数和菌膜形成的抑制效应显著高于盐酸(P<0.05)。CLSM观察结果表明,成膜能力较强的菌株J29和较弱的菌株CICC21530在中性和酸性培养液中均能形成一定结构的生物菌膜,但前者的菌膜形成量多于后者,酸性条件对成膜过程有抑制作用。提示乳酸能有效抑制大肠杆菌O157:H7菌膜形成过程,可为食品实际加工中该菌菌膜的消除技术提供科学思路。  相似文献   

9.
Lactic acid can reduce microbial contamination on beef carcass surfaces when used as a food safety intervention, but effectiveness when applied to the surface of chilled beef subprimal sections is not well documented. Studies characterizing bacterial reduction on subprimals after lactic acid treatment would be useful for validations of hazard analysis critical control point (HACCP) systems. The objective of this study was to validate initial use of lactic acid as a subprimal intervention during beef fabrication followed by a secondary application to vacuum-packaged product that was applied at industry operating parameters. Chilled beef subprimal sections (100 cm(2)) were either left uninoculated or were inoculated with 6 log CFU/cm(2) of a 5-strain mixture of Escherichia coli O157:H7, a 12-strain mixture of non-O157 Shiga toxin-producing E. coli (STEC), or a 5-strain mixture of nonpathogenic (biotype I) E. coli that are considered surrogates for E. coli O157:H7. Uninoculated and inoculated subprimal sections received only an initial or an initial and a second "rework" application of lactic acid in a custombuilt spray cabinet at 1 of 16 application parameters. After the initial spray, total inoculum counts were reduced from 6.0 log CFU/cm(2) to 3.6, 4.4, and 4.4 log CFU/cm(2) for the E. coli surrogates, E. coli O157:H7, and non-O157 STEC inoculation groups, respectively. After the second (rework) application, total inoculum counts were 2.6, 3.2, and 3.6 log CFU/cm(2) for the E. coli surrogates, E. coli O157:H7, and non-O157 STEC inoculation groups, respectively. Both the initial and secondary lactic acid treatments effectively reduced counts of pathogenic and nonpathogenic strains of E. coli and natural microflora on beef subprimals. These data will be useful to the meat industry as part of the HACCP validation process.  相似文献   

10.
Cross-contamination of lettuce with Escherichia coli O157:H7   总被引:2,自引:0,他引:2  
Contamination of produce by bacterial pathogens is an increasingly recognized problem. In March 1999, 72 patrons of a Nebraska restaurant were infected with enterohemorrhagic Escherichia coli (EHEC) O157:H7, and shredded iceberg lettuce was implicated as the food source. We simulated the restaurant's lettuce preparation procedure to determine the extent of possible EHEC cross-contamination and growth during handling. EHEC inoculation experiments were conducted to simulate the restaurant's cutting procedure and the subsequent storage of shredded lettuce in water in the refrigerator. All lettuce pieces were contaminated after 24 h of storage in inoculated water (2 x 10(9) CFU of EHEC per 3 liters of water) at room temperature or at 4 degrees C; EHEC levels associated with lettuce increased by > 1.5 logs on the second day of storage at 4 degrees C. All lettuce pieces were contaminated after 24 h of storage in water containing one inoculated lettuce piece (approximately 10(5) CFU of EHEC per lettuce piece) at both temperatures. The mixing of one inoculated dry lettuce piece with a large volume of dry lettuce, followed by storage at 4 degrees C or 25 degrees C for 20 h resulted in 100% contamination of the leaves tested. Microcolonies were observed on lettuce stored at 25 degrees C, while only single cells were seen on leaves stored at 4 degrees C, suggesting that bacterial growth had occurred at room temperature. Three water washes did not significantly decrease the number of contaminated leaves. Washing with 2,000 mg of calcium hypochlorite per liter significantly reduced the number of contaminated pieces but did not eliminate contamination on large numbers of leaves. Temperature abuse during storage at 25 degrees C for 20 h decreased the effectiveness of the calcium hypochlorite treatment, most likely because of bacterial growth during the storage period. These data indicate that storage of cut lettuce in water is not advisable and that strict attention must be paid to temperature control during the storage of cut lettuce.  相似文献   

11.
A new medium (Escherichia coli O157:H7 medium: EOH) was developed for differentiation between E. coli and E. coli O157:H7. The EOH medium was compared with sorbitol MacConkey agar (SMAC), which is the most popular medium to enumerate E. coli O157:H7. Several combinations of 35 dyes were evaluated to develop the new medium. Indigo carmine (0.03) g/liter) and phenol red (0.036 g/liter) were found as the best combination for differentiation between E. coli O157:H7 and E. coli and added to the basal agar medium (SMAC medium excluding neutral red and crystal violet) for EOH medium. On the dark blue EOH medium, E. coli produced a yellow color with clear zone, whereas E. coli O157:H7 produced a red color without clear zone. For differentiation between E. coli and E. coli O157:H7, EOH has much better potential than SMAC. Furthermore. the red color produced by normal E. coli in SMAC may mask the light gray color produced by E. coli O157: H7, whereas the yellow color with clear zone did not mask the red color without clear zone in the EOH medium. The recovery numbers of E. coli O157:H7 from inoculated ground beef, pork, and turkey were not significantly different between SMAC and EOH media (P > 0.05). The recovery rates of heat- and cold-injured E. coli O157:H7 also were not significantly different (P > 0.05).  相似文献   

12.
Escherichia coli O157:H7 and its significance in foods   总被引:17,自引:0,他引:17  
Escherichia coli O157:H7 was conclusively identified as a pathogen in 1982 following its association with two food-related outbreaks of an unusual gastrointestinal illness. The organism is now recognized as an important cause of foodborne disease, with outbreaks reported in the U.S.A., Canada, and the United Kingdom. Illness is generally quite severe, and can include three different syndromes, i.e., hemorrhagic colitis, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Most outbreaks have been associated with eating undercooked ground beef or, less frequently, drinking raw milk. Surveys of retail raw meats and poultry revealed E. coli O157:H7 in 1.5 to 3.5% of ground beef, pork, poultry, and lamb. Dairy cattle, especially young animals, have been identified as a reservoir. The organism is typical of most E. coli, but does possess distinguishing characteristics. For example, E. coli O157:H7 does not ferment sorbitol within 24 h, does not possess beta-glucuronidase activity, and does not grow well or at all at 44-45.5 degrees C. The organism has no unusual heat resistance; heating ground beef sufficiently to kill typical strains of salmonellae will also kill E. coli O157:H7. The mechanism of pathogenicity has not been fully elucidated, but clinical isolates produce one or more verotoxins which are believed to be important virulence factors. Little is known about the significance of pre-formed verotoxins in foods. The use of proper hygienic practices in handling foods of animal origin and proper heating of such foods before consumption are important control measures for the prevention of E. coli O157:H7 infections.  相似文献   

13.
Extensive research, intervention equipment, money, and media coverage have been directed at controlling Escherichia coli O157:H7 in beef cattle. However, much of the focus has been on controlling this pathogen postcolonization. This study was conducted to examine the performance, health, and shedding characteristics of beef calves that were vaccinated with an E. coli O157:H7 SRP bacterial extract. These calves had been born to cows vaccinated prepartum with the same vaccine. Cows and calves were assigned randomly to one of four treatments: (i) neither cows nor calves vaccinated with E. coli O157:H7 SRP (CON), (ii) cows vaccinated with E. coli O157:H7 SRP prepartum but calves not vaccinated (COWVAC), (iii) calves vaccinated with E. coli O157:H7 SRP but born to cows not vaccinated (CALFVAC), (iv) cows vaccinated with E. coli O157:H7 SRP prepartum and calves also vaccinated (BOTH). Calves born to vaccinated cows had significantly higher titers of anti-E. coli O157:H7 SRP antibodies (SRPAb) in circulation at branding time (P < 0.001). Upon entry to the feedlot, overall fecal E. coli O157:H7 prevalence was 23 % among calves, with 25 % in the CON treatment group, 19 % in the CALFVAC group, 32 % in the COWVAC group, and 15 % in the BOTH group (P > 0.05). Fecal shedding of E. coli O157 on arrival to the feedlot was not correlated with fecal shedding at slaughter (Spearman's rho = -0.02; P = 0.91). No significant effects of cow or calf E. coli O157:H7 SRP vaccination treatment were found on feedlot calf health or performance (P > 0.05), prevalence of lung lesions or liver abscess (P > 0.05), or morbidity, retreatment, or mortality numbers (P > 0.05). The findings of this study indicate that the timing of vaccination of calves against E. coli O157:H7 may be an important consideration for maximizing the field efficacy of this vaccine.  相似文献   

14.
We examined the acid tolerance and gad mRNA levels of Escherichia coli O157:H7 (three strains) and nonpathogenic E. coli (strains K12, W1485, and B) grown in foods. The E. coli cells (approximately 30,000 cells) were inoculated on the surface of 10 g of solid food samples (asparagus, broccoli, carrot, celery, cucumber, eggplant, ginger, green pepper, onion, potato, radish, tomato and beef) and in 10 ml of cow's milk, cultured statically at 10-25 degrees C for 1-14 days, and subjected to an acid challenge at 37 degrees C for 1 h in LB medium (pH 3.0). When grown at 20 and 25 degrees C in all foods, except for tomato and ginger, the strains showed a stationary-phase specific acid tolerance. The acid tolerance of the O157 strains changed depending on the types of foods (3-10% survival), but was clearly lower than that of the cells grown in EC medium (more than 90% survival). Tomato and ginger induced relatively high acid tolerances (10-30% survival) in the O157 strains irrespective of the growth phase, probably because of their acidity. No remarkable difference was observed in the acid tolerance between the O157 and nonpathogenic strains grown in all foods. When grown at 10 and 15 degrees C in the foods and EC medium, none of the strains showed the stationary-phase specific acid tolerance. In beef, broccoli, celery, potato and radish, the acid tolerance showed a tendency to decrease with the prolonged cultivation time. In other foods, the acid tolerance was almost constant (about 0.1% survival) irrespective of the growth stage. The mRNA level of glutamate decarboxylase genes (gadA and gadB) correlated to the acid tolerance level when the E. coli cells were grown at 25 degrees C, but was very low even in the stationary phase when the E. coli cells were grown at 15 degrees C or below.  相似文献   

15.
为推动O15 7:H7致病机制的深入研究 ,介绍了近年来对EHECO15 7:H7的基因组和特异性大质粒pO15 7上与细菌致病性有关的主要致病因子的研究进展。  相似文献   

16.
Pulque is a traditional Mexican fermented alcoholic beverage produced from the nectar of maguey agave plants. No data exist on the behavior of Escherichia coli O157:H7 in agave nectar and pulque. An initial trial was done of the behavior of E. coli O157:H7 during fermentation of nectar from a single producer, a nectar mixture from different producers and "seed" pulque. A second trial simulating artisanal pulque production was done by contaminating fresh nectar with a cocktail of three E. coli O157:H7 strains, storing at 16 ° and 22 °C for 14 h, adding seed pulque and fermenting until pulque was formed. A third trial used pulque from the second trial stored at 22 °C as seed to ferment fresh nectar at 22 °C for 48 h (fermentation cycle). This procedure was repeated for an additional two fermentation cycles. During incubation at 16 ° or 22 °C in the first trial, the E. coli O157:H7 strains multiplied in both the single producer nectar and nectar mixture, reaching maximum concentration at 12h. E. coli O157:H7 cell concentration then decreased slowly, although it survived at least 72 h in both fermented nectars. E. coli O157:H7 did not multiply in the seed pulque but did survive at least 72 h. In the second trial, the numbers of E. coli O157:H7 increased approximately 1.5 log CFU/ml at 22 °C and 1.2 log CFU/ml at 16 °C after 14 h. After seed pulque was added, E. coli O157:H7 concentration decreased to approximately 2 log CFU/ml, and then remained constant until pulque was produced. In the third trial, the E. coli O157:H7 cells multiplied and survived during at least three nectar fermentation cycles. The results suggest that E. coli O157:H7 can develop acid and alcohol tolerance in pulque, and constitutes a public health risk for pulque consumers.  相似文献   

17.
Six human isolates of Escherichia coli O157:H7 and E. coli (ATCC 11229) were used to determine the concentrations of free chlorine and exposure times required for inactivation. Free chlorine concentrations of 0.25, 0.5, 1.0, and 2.0 ppm at 23 degrees C were evaluated, with sampling times at 0, 0.5, 1.0, and 2.0 min. Results revealed that five of six E. coli O157:H7 isolates and the E. coli control strain were highly susceptible to chlorine, with >7 log10 CFU/ml reduction of each of these strains by 0.25 ppm free chlorine within 1 min. However, comparatively, one of the seven strains was unusually tolerant to chlorine at 23 degrees C for 1 min, with a 4-, 5.5-, 5.8-, and >5.8-log CFU/ml reduction at free chlorine concentrations (ppm) of 0.25, 0.5, 1.0, and 2.0. respectively. Based on these studies most isolates of E. coli O157:H7 have no unusual tolerance to chlorine; however, one strain was exceptional in being recovered after 1-min of exposure of 10(7) CFU/ml to 2.0 ppm of free chlorine. This isolate may be a useful reference strain for future studies on chlorine tolerance of E. coli O157:H7.  相似文献   

18.
Three intervention strategies-trisodium phosphate, lactic acid, and sodium metasilicate--were examined for their in vitro antimicrobial activities in water at room temperature against a three-strain cocktail of Escherichia coli O157:H7 and a three-strain cocktail of "generic" E. coli. Both initial inhibition and recovery of injured cells were monitored. When 3.0% (wt/wt) lactic acid, pH 2.4, was inoculated with E. coli O157:H7 (approximately 6 log CFU/ml), viable microorganisms were recovered after a 20-min exposure to the acid. After 20 min in 1.0% (wt/wt) trisodium phosphate, pH 12.0, no viable E. coli O157:H7 microorganisms were detected. Exposure of E. coli O157:H7 to sodium metasilicate (5 to 10 s) at concentrations as low as 0.6%, pH 12.1, resulted in 100% inhibition with no recoverable E. coli O157:H7. No difference in inhibition profiles was detected between the E. coli O157:H7 and generic strains, suggesting that nonpathogenic strains may be used for in-plant sodium metasilicate studies.  相似文献   

19.
Impact of drip and overhead sprinkler irrigation on the persistence of attenuated Escherichia coli O157:H7 in the lettuce phyllosphere was investigated using a split-plot design in four field trials conducted in the Salinas Valley, California, between summer 2007 and fall 2009. Rifampicin-resistant attenuated E. coli O157:H7 ATCC 700728 (BLS1) was inoculated onto the soil beds after seeding with a backpack sprayer or onto 2- or 4-week-old lettuce plant foliage with a spray bottle at a level of 7 log CFU ml−1. When E. coli O157:H7 was inoculated onto 2-week-old plants, the organism was recovered by enrichment in 1 of 120 or 0 of 240 plants at 21 or 28 days post-inoculation, respectively. For the four trials where inoculum was applied to 4-week-old plants, the population size of E. coli O157:H7 declined rapidly and by day 7, counts were near or below the limit of detection (10 cells per plant) for 82% or more of the samples. However, in 3 out 4 field trials E. coli O157:H7 was still detected in lettuce plants by enrichment 4-weeks post-inoculation. Neither drip nor overhead sprinkler irrigation consistently influenced the survival of E. coli O157:H7 on lettuce.  相似文献   

20.
In this study, five abattoirs in Istanbul were visited between January 2000 and April 2001. During these visits, 330 cattle were selected by a systematic sampling method. Cattle were examined clinically and breed, age, and sex were recorded. Rectal swabs were taken immediately after slaughter. Immunomagnetic separation was performed, and sorbitol-negative colonies were selected on sorbitol MacConkey agar with cefixime and tellurite (CT-SMAC agar). These colonies were checked for 4-methylenebelliferyl-beta-D-glucuronide, indol, rhamnose, and urease activity and motility. Serotypes of bacteria were determined by using antisera specific for Escherichia coli O157 and H7. All cattle selected were clinically healthy. Of 88 sorbitol-negative colonies selected on CT-SMAC agar, isolates from only 14 (4.2%) cattle reacted with anti-O157, and 13 of these isolates also reacted with anti-H7. E. coli O157:H7 was isolated from all breeds, but the numbers of isolates were largest for Holstein and Swiss Brown cows. E. coli O157:H7 was most frequently isolated from 2-year-old cattle. Similarly, it was most frequently isolated from male cattle. E. coli O157:H7 was isolated from cattle slaughtered in four of the five abattoirs studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号