首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sb2O3 doping lead-free glass in Bi2O3-B2O3-BaO ternary system were prepared in the composition of several different subsystem, and the glass powder was produced through the process of water quenching. Glass transition temperatures (T g ), glass soften temperatures(T s ), the volume resistivity (ρ) in the temperature range of 80–200°C, and linear thermal coefficients of expansion in the temperatures range of 25–300°C (α25–300) were measured for subsystems along with the different ratio of Bi2O3, B2O3 and BaO. For these subsystems, T g ranged from 458 to 481°C, and T s ranged from 490 to 512°C, both decreasing with the increasing of Bi2O3/B2O3 ratio, and increasing with the increasing of BaO/B2O3 ratio. The measured α25–300 ranged from 65.3 to 76.3 × 10−7 K−1, with values increasing with increasing Bi2O3/B2O3 and BaO/B2O3 ratio. The volume resistivity remains at a high standards, which may caused by it’s non-alkali composition, and it fluctuated from 1013 to 1011 Ω cm with the temperature varied from 80–200°C. The structure of Bi2O3-B2O3-BaO ternary leadfree glass system was mearsured by FT-IR. The IR studies indicate that these glasses are made up of [BiO6], [BO3], and [BO4] basic structural units, and it appears that Ba2+ acts as a glass-modifier in this ternary system, but the Bi3+ has entered the glass network when it is in relative high content so as to change the α25–300, T s and T g .  相似文献   

2.
The effect of surface area on the electrochemical properties and thermal stability of Li[Ni0.2Li0.2Mn0.6]O2 powders was characterized using a charge/discharge cycler and DSC (Differential Scanning Calorimeter). The surface area of the samples was successfully controlled from ~4.0 to ~11.7 m2 g−1 by changing the molar ratio of the nitrate/acetate sources and adding an organic solvent such as acetic acid or glucose. The discharge capacity and rate capability was almost linearly increased with increase in surface area of the sample powder. A sample with a large surface area of 9.6–11.7 m2 g−1 delivered a high discharge capacity of ~250 mAh g−1 at a 0.2 C rate and maintained 62–63% of its capacity at a 6 C rate versus a 0.2 C rate. According to the DSC analysis, heat generation by thermal reaction between the charged electrode and electrolyte was not critically dependent on the surface area. Instead, it was closely related to the type of organic solvent employed in the fabrication process of the powder.  相似文献   

3.
Spinel Li4Mn5O12 was prepared by a sol–gel method. The manganese oxide and activated carbon composite (MnO2-AC) were prepared by a method in which KMnO4 was reduced by activated carbon (AC). The products were characterized by XRD and FTIR. The hybrid supercapacitor was fabricated with Li4Mn5O12 and MnO2-AC, which were used as materials of the two electrodes. The pseudocapacitance performance of the Li4Mn5O12/MnO2-AC hybrid supercapacitor was studied in various aqueous electrolytes. Electrochemical properties of the Li4Mn5O12/MnO2-AC hybrid supercapacitor were studied by using cyclic voltammetry, electrochemical impedance measurement, and galvanostatic charge/discharge tests. The results show that the hybrid supercapacitor has electrochemical capacitance performance. The charge/discharge test showed that the specific capacitance of 51.3 F g−1 was obtained within potential range of 0–1.3 V at a charge/discharge current density of 100 mA g−1 in 1 mol L−1 Li2SO4 solution. The charge/discharge mechanism of Li4Mn5O12 and MnO2-AC was discussed.  相似文献   

4.
The Li-rich layered cathode material, Li[Ni0.2Li0.2Mn0.6]O2, was synthesized via a “mixed oxalate” method, and its structural and electrochemical properties were compared with the same material synthesized by the sol–gel method. X-ray diffraction (XRD) shows that the synthesized powders have a layered O3–LiCoO2-type structure with the R-3m symmetry. X-ray photoelectron spectroscopy (XPS) indicates that in the above material, Ni and Mn exist in the oxidation states of +2 and +4, respectively. The layered material exhibits an excellent electrochemical performance. Its discharge capacity increases gradually from the initial value of 228 mA hg−1 to a stable capacity of over 260 mA hg−1 after the 10th cycle. It delivers a larger capacity of 258 mA hg−1 at the 30th cycle. The dQ/dV curves suggest that the increasing capacity results from the redox-reaction of Mn4+/Mn3+.  相似文献   

5.
Synthetic spinels of the system MgO-Cr2O3-Al2O3-Fe2O3 are considered and the desirability of organizing their production for the refractory industry is demonstrated. Translated from Novye Ogneupory, No. 6, pp. 32–35, June 2008.  相似文献   

6.
Co3O4 nanorods have been successfully synthesized by thermal decomposition of the precursor prepared via a facile and efficient microwave-assisted hydrothermal method, using cetyltrimethylammonium bromide (CTAB) with ordered chain structures as soft template for the first time. The obtained Co3O4 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical measurements. The results demonstrate that the as-synthesized nanorods are single crystalline with an average diameter of about 20 to 50 nm and length up to several micrometers. Preliminary electrochemical studies, including cyclic voltammetry (CV), galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) measurements, are carried out in 6 M KOH electrolyte. Specific capacitance of 456 F g−1 for a single electrode could be achieved even after 500 cycles, suggesting its potential application in electrochemical capacitors. This promising method could provide a universal green chemistry approach to synthesize other low-cost and environmentally friendly transition metal hydroxide or oxide.  相似文献   

7.
Nanoporous silica membrane without any pinholes and cracks was synthesized by organic templating method. The tetrapropylammoniumbromide (TPABr)-templating silica sols were coated on tubular alumina composite support ( γ-Al2O3/ α-Al2O3 composite) by dip coating and then heat-treated at 550 °C. By using the prepared TPABr templating silica/alumina composite membrane, adsorption and membrane transport experiments were performed on the CO2/N2, CO2/H2 and CH4/H2 systems. Adsorption and permeation by using single gas and binary mixtures were measured in order to examine the transport mechanism in the membrane. In the single gas systems, adsorption characteristics on the α-Al2O3 support and nanoporous unsupport (TPABr templating SiO2/ γ-Al2O3 composite layer without α-Al2O3 support) were investigated at 20–40 °C conditions and 0.0–1.0 atm pressure range. The experimental adsorption equilibrium was well fitted with Langmuir or/and Langmuir-Freundlich isotherm models. The α-Al2O3 support had a little adsorption capacity compared to the unsupport which had relatively larger adsorption capacity for CO2 and CH4. While the adsorption rates in the unsupport showed in the order of H2> CO2> N2> CH4 at low pressure range, the permeate flux in the membrane was in the order of H2≫N2> CH4> CO2. Separation properties of the unsupport could be confirmed by the separation experiments of adsorbable/non-adsorbable mixed gases, such as CO2/H2 and CH4/H2 systems. Although light and non-adsorbable molecules, such as H2, showed the highest permeation in the single gas permeate experiments, heavier and strongly adsorbable molecules, such as CO2 and CH4, showed a higher separation factor (CO2/H2=5-7, CH4/H2=4-9). These results might be caused by the surface diffusion or/and blocking effects of adsorbed molecules in the unsupport. And these results could be explained by surface diffusion. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

8.
LiMn2O4/multi-walled carbon nanotubes (MWNTs) composite was synthesized by mechanical activation reaction followed by a heat-treatment (500 °C). The LiMn2O4 and LiMn2O4/MWNTs as cathodes were investigated in 1 M Li2SO4 by cyclic voltammetry (CV), galvanostatic charge/discharge (GC), and electrochemical impedance spectroscopy (EIS). The LiMn2O4/MWNTs cathode delivered higher discharge capacity (117 mAh g−1) than LiMn2O4 (84.6 mAh g−1). Furthermore, the results from EIS showed that LiMn2O4/MWNTs had a faster kinetic process for lithium ion intercalation/de-intercalation than LiMn2O4. Besides, LiMn2O4/MWNTs had better cycling stability and rate capability than LiMn2O4, which was confirmed by GC testing. SEM images showed that a three-dimensional network structure was formed during the mechanical activation, giving a decrease of particle size.  相似文献   

9.
An X-ray method was used to study the phase composition of the combustion products of a Fe2O3/TiO2/Al/C thermite composite mixture, in particular, during combustion of samples under cooling by water. The data of the experiments are compared with the results of thermodynamic calculations. A probable explanation of the reasons of the angular displacement of the line of iron in the X-ray spectrum of the combustion products and a mechanism for the crystallization of an eutectic TiC + α-Fe mixture from the melt of the Ti/Fe/C ternary system. The composition of the combustion products was found to be different from the equilibrium one, which is manifested in the presence of defects in the carbon sublattice of titanium carbide. A probable explanation of the deficiency of carbon is proposed. __________ Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 4, pp. 39–43, July–August, 2008.  相似文献   

10.
Details are given of the synthesis and testing of flux-cast refractory materials in the alumina-rich region of the Al2O3-MgO-B2O3 system; XRD and petrography indicate that the main structure-forming phases are corundum and magnesian spinel. In subordinate amounts there are the boroaluminate 9Al2O3·2B2O3 and the previously unknown compound 4Al2O3·MgO·2B2O3, whose composition has been established by microprobe analysis. Corrosion tests showed that three-component systems containing magnesium and boron oxides at levels of 5–10% do not increase the corrosion resistance of refractories in molten sodium-calcium-silicate glass and electrovacuum borosilicate glass. __________ Translated from Novye Ogneupory, No. 3, pp. 161–163, March, 2008.  相似文献   

11.
Magnetic spindle-like Fe3O4 mesoporous nanoparticles with a length of 200 nm and diameter of 60 nm were successfully synthesized by reducing the spindle-like α-Fe2O3 NPs which were prepared by forced hydrolysis method. The obtained samples were characterized by transmission electron microscopy, powder X-ray diffraction, attenuated total reflection fourier transform infrared spectroscopy, field emission scanning electron microscopy, vibrating sample magnetometer, and nitrogen adsorption-desorption analysis techniques. The results show that α-Fe2O3 phase transformed into Fe3O4 phase after annealing in hydrogen atmosphere at 350°C. The as-prepared spindle-like Fe3O4 mesoporous NPs possess high Brunauer-Emmett-Teller (BET) surface area up to ca. 7.9 m2 g-1. In addition, the Fe3O4 NPs present higher saturation magnetization (85.2 emu g-1) and excellent magnetic response behaviors, which have great potential applications in magnetic separation technology.  相似文献   

12.
The hydrogel of the mixed oxide Al2O3-30% Y0.1Zr0.9O2 was prepared by precipitation of ammonia from a water-alcohol mixture (1 : 5). The Al2O3-30% Y0.1Zr0.9O2 compound thus synthesized was characterized using differential scanning calorimetry, transmission electron microscopy, and the BET adsorption method. The obtained sample consisted of spherical particles with an average size of 16–20 nm and a specific surface area of 167 m2/g. The Al2O3-30% Y0.1Zr0.9O2 powder was pressed at 300 MPa and then calcinated at 1600°C for 2 h in air. The topographic and structural features of the prepared ceramics were determined using atomic force microscopy and X-ray electron probe microanalysis. The porosity, the Vickers microhardness, and the tensile strength were determined by mercury porometry.  相似文献   

13.
Nickel hydroxide nanosheets were successfully synthesized by facile solvothermal method without any template. The structure and morphology of the as-prepared sample were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. The observations revealed the formation of hexagonal phase β-Ni(OH)2 nanosheets with an average diameter of about 100–120 nm. Electrochemical studies were carried out using cyclic voltammetry and galvanostatic charge–discharge tests, respectively. A maximum specific capacitance of 2,342 F g−1, which is the highest reported for a β-Ni(OH)2 electrode, could be achieved in 6 mol L−1 KOH electrolyte within the potential range of 0–0.50 V (vs. SCE) for the obtained β-Ni(OH)2 electrode at 0.4 A g−1, suggesting its potential application in the electrode material for electrochemical capacitors.  相似文献   

14.
High quality crednerite CuMnO2 was prepared by solid state reaction at 950 °C under argon flow. The oxide crystallizes in a monoclinically distorted delafossite structure associated to the static Jahn–Teller (J–T) effect of Mn3+ ion. Thermal analysis showed that it converts reversibly to spinel Cu x Mn3−x O4 at ~420 °C in air and further heating reform the crednerite above 940 °C. CuMnO2 is p-type, narrow semiconductor band gap with a direct optical gap of 1.31 eV. It exhibits a long-term chemical stability in basic medium (KOH 0.5 M), the semi logarithmic plot gave an exchange current density of 0.2 μA cm−2 and a corrosion potential of ~−0.1 VSCE. The electrochemical oxygen insertion/desinsertion is evidenced from the intensity–potential characteristics. The flat band potential (V fb = −0.26 VSCE) and the holes density (N A  = 5.12 × 1018 cm−3) were determined, respectively, by extrapolating the curve C 2 versus the potential to the intersection with C 2  = 0 and from the slope of the Mott–Schottky plot. From photoelectrochemical measurements, the valence band formed from Cu-3d wave function is positioned at 5.24 ± 0.02 eV below vacuum. The Nyquist representation shows straight line in the high frequency range with an angle of 65° ascribed to Warburg impedance originating from oxygen intercalation and compatible with a system under mass transfer control. The electrochemical junction is modeled by an equivalent electrical circuit thanks to the Randles model.  相似文献   

15.
The nanosized Mn3O4 particles were prepared by microwave-assisted reflux synthesis method. The prepared sample was characterized using various techniques such as X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), Raman analysis, and transmission electron microscopy (TEM). Electrochemical properties of Mn3O4 nanoparticles were investigated using cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge analysis in different electrolytes such as 1 M KCl, 1 M Na2SO4, 1 M NaNO3, and 6 M KOH electrolytes. XRD pattern reveals the formation of single-phase Mn3O4 nanoparticles. The FT-IR and Raman analysis also assert the formation of Mn3O4 nanoparticles. The TEM image shows the spherical shape particles with less than 50 nm sizes. Among all the electrolytes, the Mn3O4 nanoparticles possess maximum specific capacitance of 94 F g−1 in 6 M KOH electrolyte calculated from CV. The order of capacitance obtained by various electrolytes is 6 M KOH > 1 M KCl > 1 M NaNO3 > 1 M Na2SO4. The EIS and galvanostatic charge–discharge results further substantiate with the CV results. The cycling stability of Mn3O4 electrode reveals that the prepared Mn3O4 nanoparticles are a suitable electrode material for supercapacitor application.  相似文献   

16.
Photoelectrochemical decomposition of bio-related compounds such as ammonia, formic acid, urea, alcohol, and glycine by a biophotochemical cell (BPCC) comprising a nanoporous TiO2 film photoanode and an O2-reducing cathode generating simultaneously electrical power was investigated. The bio-related compounds studied were all photodecomposed by the present BPCC when they were either liquid or soluble in water. It was shown that ethanol exhibits similar characteristics both under 1 atm O2 and air as studied by cyclic voltammograms. Although the present BPCC utilizes only UV light, a solar simulator at AM 1.5G and 100 mW cm−2 light intensity gave also moderate photocurrent–photovoltage (J–V) characteristics with about 2/5 of the short circuit photocurrent (J sc) values (J sc) of that under a Xe lamp irradiation at the intensity of 503 mW cm−2. It was demonstrated that varieties of bio-related compounds can be used as a direct fuel simultaneously for photodecomposition and electrical power generation. The charge transport processes in the BPCC operation were analyzed using glycine by an alternating current impedance spectroscopy, showing that the charge transfer reactions on the photoanode and the cathode surfaces compose the major resistance for the cell performance.  相似文献   

17.
In this study, innovative TiO2/Al2O3 mono/multilayers were applied by atomic layer depositions (ALD) on ASTM-AZ-31 magnesium/aluminum alloy to enhance its well-known scarce corrosion resistance. Four different configurations of ALD layers were tested: single TiO2 layer, single Al2O3 layer, Al2O3/TiO2 bilayer and Al2O3/TiO2/Al2O3/TiO2 multilayer deposited using Al[(CH3)]3 (trimethylaluminum, TMA), and TiCl4 and H2O precursors. All depositions were performed at 120°C to obtain an amorphous-like structure of both oxide layers. The four coatings were then investigated using different techniques, such as scanning electron microscope (SEM), stylus profilometer, glow discharge optical emission spectrometry (GDOES) and polarization curves in 0.05-M NaCl solution. The thickness of all the coatings was around 100 nm. The layers compositions were successfully investigated by the GDOES technique, although obtained data seem to be affected by substrate roughness and differences in sputtering rates between ceramic oxides and metallic magnesium alloy. Corrosion resistance showed to be strongly enhanced by the nanometric coatings, giving lower corrosion current densities in 0.05-M NaCl media with respect to the uncoated substrate (from 10−4 to 10−6 A/cm2 for the single layers and from 10−4 to 10−8 A/cm2 for the bi- and multilayers). All polarization curves on coated samples also showed a passive region, wider for the bi-layer (from −0.58 to −0.43 V with respect to Ag/AgCl) and multilayer (from −0.53 to −0.38 V with respect to Ag/AgCl) structures.  相似文献   

18.
LiNi1-y MyO2 (M = Ga, In and Tl, y = 0.010, 0.025 and 0.050) with small y were synthesized by the combustion method by calcining in an O2 stream at 750 °C for 36 h. XRD analyses, SEM observation and measurement of the variation of discharge capacity with the number of cycles were carried out. All the samples had the Rm structure and LiNi1-y In y O2 contained LiInO2 phase as an impurity. Among LiNi1-y Ga y O2 the sample with y = 0.025 had a relatively large first discharge capacity (172.2 mAh g−1) and relatively good cycling performance (discharge capacity 140.3 mAh g−1 at n = 20). For LiNi0.975M0.025O2 (M = Ga, In and Tl), the first discharge capacity decreased in the order of the substituted element Ga, In and Tl. The variations of cation mixing and hexagonal ordering with the substituted element (decrease in I003/I104 and increase in R-factor from M = Ga through M = Tl) are considered to lead to the behavior of the first discharge capacity with the substituted element. LiNi0.975Tl0.025O2 had the smallest degradation rate of the discharge capacity.  相似文献   

19.
The processes of phase formation in the Nd2O3-TiO2-Na2CO3 system have been investigated in the temperature range 500–1100°C. The mechanism of the high-temperature solid-phase reaction of formation of the complex oxide Na2Nd2Ti3O10 has been studied. It has been established that the Na2Nd2Ti3O10 compound is formed from the intermediate product Na0.5Nd0.5TiO3 with a perovskite structure in the temperature range 830–890°C and from the NaNdTiO4 oxide with a perovskite-like layered structure in the temperature range 960–1100°C.  相似文献   

20.
CO2 reforming of CH4 was performed using Ni catalyst supported on La-hexaaluminate which has been an well-known material for high-temperature combustion. La-hexaaluminate was synthesized by sol-gel method at various conditions where different amount of Ni (5–20 wt%) was loaded. Ni/La-hexaaluminate experienced 72 h reaction and its catalytic activity was compared with that of Ni/Al2O3, Ni/La-hexaaluminate shows higher reforming activity and resistance to coke deposition compared to the Ni/Al2O3 model catalyst. Coke deposition increases proportionally to Ni content. Consequently, Ni(5)/La-hexaaluminate(700) is the most efficient catalyst among various Ni/La-hexaaluminate catalysts regarding the cost of Ni in Ni(X)/La-hexaaluminate catalysts. BET surface area, XRD, EA, TGA and TPO were performed for surface characterization. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号