首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion density of a magnetically driven shunting arc discharge is estimated from the target voltage characteristics of the pulse modulator circuit in plasma-based ion implantation (PBII). The voltage recovery time constant directly reflects the ion sheath characteristics, and the sheath resistance is related to the ion density inside the transient sheath. The measured characteristics are analyzed using an equivalent circuit of the pulse modulator in PBII. The estimated ion density decreases from 3 × 108 to 4 × 107 cm− 3 with time after the arc ignition from 100 to 400 μs. This characteristic almost agrees with that of an ion current extracted from the arc plasma by applying a negative pulse voltage to the target.  相似文献   

2.
Silicon-doped diamond-like carbon (Si-DLC) films were prepared by dc pulse-plasma chemical vapor deposition (CVD), using a mixture of acetylene (C2H2) and tetramethylsilane (TMS) as the material gas. The pulse voltage was varied from − 2 to − 5 kV, and the TMS flow ratio (TMS/(C2H2 + TMS)) was varied from 0 to 40%. At a pulse voltage of − 2 kV, an increase in TMS flow ratio leads to a decrease in hardness. In contrast, at a pulse voltage of − 5 kV, an increase in TMS flow ratio leads to a slight increase in hardness. The high hydrogen concentration in the films due to an increase in TMS flow ratio promotes the formation of polymeric sp3 C―H bonds, resulting in the fabrication of soft films at a low pulse voltage of − 2 kV. However, an increase in the effect of ion peening on the growth face results in the formation of hard films at a high pulse voltage of − 5 kV. Then, at a pulse voltage of − 5 kV fabricating hard Si-DLC films, an increase in TMS flow ratio leads to an increase in the silicon content in the films, resulting in a decrease in the friction coefficient. Therefore, it is clarified that Si-DLC films fabricated by dc pulse-plasma CVD under a high pulse voltage and high TMS flow ratio exhibit high hardness and a low friction coefficient. Moreover, to investigate the friction coefficient of Si-DLC films fabricated by dc pulse-plasma CVD, films deposited by dc plasma CVD were also evaluated. To obtain the same low friction coefficient, dc pulse-plasma CVD requires less TMS than dc plasma CVD. Hence, it is also clarified that Si-DLC films can be fabricated at a low cost by dc pulse-plasma CVD.  相似文献   

3.
TiO2 thin films were deposited on silicon wafer substrates by low-field (1 < B < 5 mT) helicon plasma assisted reactive sputtering in a mixture of pure argon and oxygen. The influence of the positive ion density on the substrate and the post-annealing treatment on the films density, refractive index, chemical composition and crystalline structure was analysed by reflectometry, Rutherford backscattering spectroscopy (RBS) and X-ray diffraction (XRD). Amorphous TiO2 was obtained for ion density on the substrate below 7 × 1016 m− 3. Increasing the ion density over 7 × 1016 m− 3 led to the formation of nanocrystalline (~ 15 nm) rutile phase TiO2. The post-annealing treatment of the films in air at 300 °C induced the complete crystallisation of the amorphous films to nanocrystals of anatase (~ 40 nm) while the rutile films shows no significant change meaning that they were already fully crystallised by the plasma process. All these results show an efficient process by low-field helicon plasma sputtering process to fabricate stoichiometric TiO2 thin films with amorphous or nanocrystalline rutile structure directly from low temperature plasma processing conditions and nanocrystalline anatase structure with a moderate annealing treatment.  相似文献   

4.
The effect of oxygen and argon partial pressures (PO2, PAr) in a Zr vacuum arc on plasma ion current density Jp, arc voltage Varc, deposition rate vd, and selected coating properties was determined. A d.c. arc current of Iarc = 100 A was initiated between a Zr cathode and a grounded anode. Cathode spots produced a plasma jet, which entered a 1/8 torus macroparticle (MP) filter. The plasma was guided by a d.c. magnetic field through an aperture to a glass substrate or a flat disk probe, mounted on a rotatable holder. Jp was measured with the probe, negatively biased to Vb = − 60 V. Coating thickness was measured using a profilometer, and coating properties were investigated using optical microscopy, energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), nano-indentation and optical analysis.  相似文献   

5.
The paper presents an experimental study of a pulsed DC unbalanced magnetron discharge with Ti target. This system is being used for deposition of nanocrystalline TiOx thin films. The unbalanced magnetron was operated in pulsed regime with the low repetition frequency of modulation cycle νp = 250 Hz and relatively short active part of modulation cycle Ta = 150 μs. Low average discharge current was used with maximum value about 1 A. Maximum instant discharge current in the active part of modulation cycle was 20 A. Relatively high plasma density up to value ne ≈ 1018 m− 3 was achieved at these conditions but due the low average power absorbed in the plasma the heat load applied on the target and the substrate was low. Time-resolved and spatially resolved Langmuir probe diagnostics was used for the systematic and detailed experimental study of the system. Experimental conditions as the instant value of discharge current, gas pressure in the reactor, gas mixture ratio Ar/O2, etc. were varied in a broad range. The time evolutions of plasma parameters such as electron density, electron temperature, plasma potential and EEPF were determined during the modulation cycle of pulse discharge excitation.  相似文献   

6.
The alpha-particle sensitive colorless cellulose nitrate films (commercially available as LR 115 films from DOSIRAD, France) have been proposed as cell-culture substrates for alpha-particle radiobiological experiments. Cytocompatibility of the substrate is a key factor to the success of such experiments. The present work aims to investigate the cytocompatibility of surface-treated cellulose nitrate films by using plasma immersion ion implantation-deposition. The films were placed in a vacuum chamber, into which nitrogen gas was continuously bled and where the pressure was kept at 2 × 10− 3 Torr. Implantation was carried out by igniting the nitrogen plasma at 100 W radio-frequency and applying high bias voltage in pulse with 20 μs pulse width and 50 Hz (with 20 kV or no voltage). HeLa cervix cancer cells were then cultured on both the plasma-treated and untreated cellulose nitrate films. Our tests showed that the plasma-treated films are in general more cytologically compatible.  相似文献   

7.
Controlled ion bombardment of growing thin films can be used to modify and improve the film structure and properties. Recently, higher energetic species (up to hundreds eV) were found in the plasma by pulsing the target(s) in magnetron sputtering. In this study, an electrostatic quadrupole plasma mass spectrometer (EQP) has been used in a pulsed closed unbalanced magnetron sputtering (P-CFUBMS) system to investigate the effect of different pulsing parameters (frequency and reverse time) on the ion energies and ion fluxes in the intrinsic plasma during Cr-Al-N film deposition. It is confirmed that pulsing both magnetrons in this P-CFUBMS configuration had a large effect on both the ion energies and ion fluxes generated within the plasma, which are shown to be strongly dependent on pulsing frequency and duty cycle.The effect of pulsing to provide a wide range of ion energies and ion fluxes on the film microstructure, mechanical and tribological properties was investigated using nanoindentation, microtribometry, X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and scanning transmission electron microscopy (TEM). In the current study, by taking −50 V substrate bias into consideration, it was found that total ion energies with controlled pulsing parameters to achieve moderate values (70-120 eV) can effectively increase the density and decrease the grain size of Cr-Al-N films. On the other hand, pulsing regimes that produce excessive total ion energy (∼ 200 eV) result in an increase in the residual strain, and point and lattice defects in the film, which will significantly decrease the toughness and tribological properties of the film. Under optimum pulsing conditions (100 kHz and 5.0 μs), Cr-Al-N films with a dense nanostructure (column grain size of 10-40 nm) of super hardness and good wear resistance (41 GPa, 0.099 H/E ratio, 0.46 COF, and a wear rate of 3.4 × 10− 6 mm3N− 1 m− 1) have been deposited using a controlled maximum ion energy bombardment of 122 eV at high ion flux.  相似文献   

8.
In this paper is described the simple structure of a new type surface-wave-sustained plasma (SWP) source without a magnetic field surrounding the chamber wall. In the source, the plasma is excited and sustained by 2.45 GHz microwaves, and the plasma density is measured by a single Langmuir probe in the target direction. The results indicate that the electron density obtained in this system is as high as 9 × 1011 cm− 3 even at a low pressure of 2.8 Pa. A graphite target (99.998%) and argon (99.999%) are used for depositing hydrogen-free amorphous carbon films by the new SWP source. The Raman spectra of the carbon films were obtained, and the results denote that the structure of the carbon films prepared by SWP is typical of diamond-like carbon; the Raman intensity ratio ID/IG is 2.97. The surface morphology was investigated by using an atomic force microscope (AFM). The images demonstrate that the hydrogen-free carbon films deposited by SWP have a very smooth surface, with a grain size of about 20 nm and surface roughness Ra of about 0.778 nm.  相似文献   

9.
An efficient plasma source has been established by arranging a hot hollow cathode electron emitter in a strong axial magnetic field, allowing for a reduction of working gas flow by one order of magnitude without loss of discharge stability. Moreover, with the reduction of gas flow not only an increase of the discharge impedance was observed, but also a multiplication of ion current density together with a highly expanded volume of the plasma plume.By means of spatially resolved Langmuir probe measurements, combined with the usage of an energy-resolved mass-spectrometer, plasma density profiles and energy distribution functions of electrons and ions have been measured. Generally, with an increase of the magnetic field and with the reduction of the working gas flow ion energy distribution functions shift from mean values of a few eV to 10 eV and more, while charge carrier densities increase from 109 cm− 3 to more than 1012 cm− 3. A strongly increased ability to dissociate and ionize reactive gases was observed.Two promising applications related to the coating of tools and components are discussed: the sputter etching with argon ions and the reactive pulse magnetron sputter deposition of wear-resistant chromium nitride layers. Whereas the first mentioned process provides pre-heating and etching rates higher than all actually used in tool coating industry, the second one offers advantages for film growth kinetics leading to significant improvements in composition, structure, surface morphology, and hardness of the deposited layers.  相似文献   

10.
A hybrid plasma is generated by combining a burst methane rf (195 kHz) plasma with a carbon shunting arc discharge. The shunting arc discharge triggers the rf methane plasma. As a result, the rf plasma is initiated over a wide range of ambient gas pressure from 0.045 Pa as a base pressure to a methane pressure of 1.26 Pa, at which the rf plasma is not self-ignited. When a target is immersed in the rf- and shunting arc-hybrid plasma, and a negative pulse voltage is applied to the target, carbon ions are extracted from the hybrid plasma. When the carbon shunting arc ionizes the methane gas, an rf plasma is initiated and the ionization of methane is significantly enhanced in the rf plasma. The plasma density in the hybrid plasma increases by a factor of approximately 5-9 compared to that of the shunting arc discharge.  相似文献   

11.
Nanoscale CrN/NbN multilayer PVD coatings have exhibited resistance to erosion-corrosion. However growth defects (under dense structures and droplets) in the coating produced by some deposition technologies reduce the ability to offer combined erosion-corrosion resistance. In this work a novel High Power Impulse Magnetron Sputtering (HIPIMS) technique has been utilised to pretreat substrates and deposit dense nanoscale CrN/NbN PVD coatings (HIPIMS-HIPIMS technique). This new technique, rich with metal ion plasma, deposits very dense structures and offers virtually defect free coatings (free of droplets as observed in cathodic arc technique and under-dense structures observed in standard dc sputtering). Plasma diagnostic studies revealed a high metal ion-to-gas ion ratio (Cr:Ar) of 3:1 for HIPIMS pretreatment conditions with the detection of 14% Cr2+ and 1% Cr3+ ions and Js of 155 mAcm− 2. For deposition conditions the metal ion-to-gas ratio was approximately 1:4 which is significantly higher compared to DC at 1:30. Characterisation results revealed a high adhesion of LC 80 N, high hardness of 34 GPa and Young's modulus of 381 GPa. Low friction coefficient (0.46) and dry sliding wear coefficient, KC (1.22 × 10− 15 m3Nm− 1) were recorded. The effect of deposition technique (droplet defect and intergranular void free coatings) on erosion-corrosion resistance of CrN/NbN coatings has been evaluated by subjecting the coatings to a slurry impingement (Na2CO3 + NaHCO3 buffer solution with Al2O3 particles of size 500-700 µm) at 90° impact angle with a velocity of 4 ms− 1. Experiments have been carried at − 1000 mV, + 300 mV and + 700 mV representing 3 different corrosion conditions.  相似文献   

12.
Nitriding treatments using various (Ar-N2-H2) gas mixtures are performed on thin molybdenum films coated on Si (100) substrates, in an expanding microwave plasma reactor.The electron density measured in (Ar-25%N2-30%H2) and (Ar-8%N2-10%H2) plasma as well as the electron energy distribution function (EEDF) vary with the distance from the centre of the discharge and are large compared to the corresponding parameters found in (Ar-30%N2-12%H2) gas mixture and pure N2 gas. In such ternary gas mixtures, the mean electron energy ranges between 0.5 and 0.7 eV. A nitride compound of tetragonal-like structure is formed in the whole film thickness of molybdenum heated at 873 K and exposed to (Ar-25%N2-30%H2) and (Ar-8%N2-10%H2) gas mixtures for exposure times of 20 min duration. It consists of small columnar grains ranging in size from 20 to 30 nm in the growth direction. The nitrogen diffusion profiles are fitted to the Fick's second law by introducing a diffusion coefficient ranging between 5 × 10− 10 and 5 × 10− 9 cm2s− 1 within the accuracy of the method. The diffusion coefficient found from previous measured pressure transients is equal to about 10− 10 cm2s− 1. The plasma composition as well as the distance from the centre of the discharge seems to play a role on the reduction of oxides, only. An (Ar-25%N2-30%H2) nitriding treatment carried out at 8 cm from the centre of the discharge leads to oxide amount twice lower than the one measured after an (Ar-8%N2-10%H2) nitriding treatment carried out at 12 cm from the centre of the discharge. Because of the low ion energies, the reduction of oxides is probably mainly confined to hydrogen species.  相似文献   

13.
Bi-doped ZnO thin films were grown on glass substrates by ratio frequency (rf) magnetron sputtering technique and followed by annealing at 400 °C for 4 h in vacuum (~ 10− 1 Pa). The effect of argon pressure on the structural, optical, and electrical properties of the Bi-doped films were investigated. The XRD patterns show that the thin films were highly textured along the c-axis and perpendicular to the surface of the substrate. Some excellent properties, such as high transmittance (about 85%) in visible region, low resistivity value of 1.89 × 10− 3 W cm and high carrier density of 3.45 × 1020 cm− 3 were obtained for the film deposited at the argon pressure of 2.0 Pa. The optical band gap of the films was found to increase from 3.08 to 3.29 eV as deposition pressure increased from 1 to 3 Pa. The effects of post-annealing treatments had been considered. In spite of its low conductivity comparing with other TCOs, Bi-doping didn't appreciably affect the optical transparency in the visible range of ZnO thin films.  相似文献   

14.
High density plasma assisted sputtering source (HiPASS) has been introduced to develop a remote plasma sputtering. In HiPASS the remote plasma source (RPS) was an electron beam excited plasma using a direct current discharge supplying Ar plasma (1010–11 cm− 3). Ar plasma was transported from the RPS to a sputtering cathode by external magnetic fields. The transported Ar ions generated a physical sputtering at the negatively biased sputtering cathode. HiPASS has an advantage that sputtering current and voltage were controllable independently. The sputtering current was dominantly controllable by the discharge power of the RPS. And sputtering voltage was applied to the sputtering cathode freely with the fixed sputtering current modulated by the discharge power of the RPS. As the discharge power of the RPS is increased from 2.4 to 8.4 kW, the sputtering current of sputtering cathode (78.5 cm2) was varied from 1.2 ± 0.1 to 3.6 ± 0.2 A. This was an improved sputtering current comparing with practical sputtering current (1 A at 78.5 cm2) of radio frequency excited remote plasma sputtering. The remote plasma sputtering with the improved sputtering current could be applied to low voltage high current sputtering for damage-free transparent conductive oxide and barrier film depositions as well as high voltage high current sputtering for hard coating applications.  相似文献   

15.
The Al ion implantation into AZ31 magnesium alloy was carried out in a MEVVA 80-10 ion implantation system at an ion energy of 40-50 keV with an ion implantation dose ranging from 2 × 1016 to 1 × 1017 ions/cm2 at an elevated temperature of 300 °C induced by an ion current density of 26 μA/cm2. The concentration-depth profile of implanted Al in AZ31 alloy measured by Rutherford backscattering spectrometry (RBS) is a Gaussian-type-like distribution in a depth up to about 1200 nm with the maximum Al concentration of about 8 at.%. The X-ray diffraction (XRD) analysis revealed the formation of α-Mg(Al) phase, intermetallic β-Mg17Al12, and MgO phase on the Al ion implanted samples. The potentiodynamic anodic polarization curves of the Al ion implanted samples in the 0.01 mol/l NaCl solution with a pH value of 12 showed increases of the corrosion potential and the pitting breakdown potential, and a decrease of the passive current density, respectively. The Al ion implanted samples with 6 × 1016 ions/cm2 achieved the high pitting breakdown potential to about − 480 mV (SCE). In the 0.08 mol/l NaCl solution with pH = 12, the Al ion implanted samples with 1 × 1017 ions/cm2 showed an increased pitting breakdown potential to about − 1290 mV (SCE), from around − 1540 mV (SCE) of unimplanted samples. It is indicated that different corrosion mechanisms are responsible for improvement in corrosion resistance of the AZ31 magnesium alloy in the NaCl solutions with the varied concentrations.  相似文献   

16.
The time averaged ion energy distributions and ion fluxes of continuous dc magnetron sputtering (dcMS), middle frequency pulsed dc magnetron sputtering (PMS), and modulated pulse power (MPP) magnetron sputtering plasmas were compared during sputtering of a Cr target in an Ar/N2 atmosphere in a closed field unbalanced magnetron sputtering system. The results showed that the dcMS plasma exhibited a low ion energy and ion flux; the PMS plasma generated a moderate ion flux of multiple high ion energy regions; while the MPP plasma exhibited a significantly increased number of target Cr+ and gas ions with a low ion energy as compared to the dcMS and PMS plasmas. Cubic CrN coatings were deposited using these three techniques with a floating substrate bias. The structure and properties of the coatings were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nanoindentation, microscratch and ball-on-disk wear tests. It was found that the deposition rate of the MPP CrN depositions was slightly lower than those of the dcMS depositions, but higher than in the PMS depositions at similar average target powers. The coatings deposited in the dcMS and PMS conditions without the aid of the substrate bias exhibited large columnar grains with clear grain boundaries. On the other hand, the interruption of the large columnar grain growth accompanied with the renucleation and growth of the grains was revealed in the MPP CrN coatings. The MPP CrN coatings exhibited a dense microstructure, fine grain size and smooth surface with high hardness (24.5 and 26 GPa), improved wear resistance (COF = 0.33 and 0.36) and adhesion, which are the results of the low ion energy and high ion flux bombardment from the MPP plasma.  相似文献   

17.
We studied surface modification of a double layer protective coating on steel induced by single fs laser pulse irradiation in ambient air. The outer alumina (Al2O3) layer, which protects against aggressive environments, was 1.7 μm thick and the titanium aluminum nitride (TiAlN) layer in contact with the steel surface had a thickness of 1.9 μm. The pulses (λ = 775 nm, τ = 200 fs) were generated by a Ti:sapphire laser source. The pulse energy was varied from 0.32 μJ to 50 μJ, corresponding to an incident laser fluence of 0.11 J cm− 2 to 16.47 J cm− 2. The surface damage threshold was found to be 0.20 J cm− 2 and the alumina layer removal was initiated at 0.56 J cm− 2. This selective ablation of alumina was possible in a wide range of fluences, up to the maximum applied, without ablating the TiAlN layer beneath.  相似文献   

18.
Filtered vacuum (cathodic) arc deposition (FVAD, FCVD) of metallic and ceramic thin films at low substrate temperature (50-400 °C) is realized by magnetically directing vacuum arc produced, highly ionized, and energetic plasma beam onto substrates, obtaining high quality coatings at high deposition rates. The plasma beam is magnetically filtered to remove macroparticles that are also produced by the arc. The deposited films are usually characterized by their good optical quality and high adhesion to the substrate. Transparent and electrically conducting (TCO) thin films of ZnO, SnO2, In2O3:Sn (ITO), ZnO:Al (AZO), ZnO:Ga, ZnO:Sb, ZnO:Mg and several types of zinc-stannate oxides (ZnSnO3, Zn2SnO4), which could be used in solar cells, optoelectronic devices, and as gas sensors, have been successfully deposited by FVAD using pure or alloyed zinc cathodes. The oxides are obtained by operating the system with oxygen background at low pressure. Post-deposition treatment has also been applied to improve the properties of TCO films.The deposition rate of FVAD ZnO and ZnO:M thin films, where M is a doping or alloying metal, is in the range of 0.2-15 nm/s. The films are generally nonstoichiometric, polycrystalline n-type semiconductors. In most cases, ZnO films have a wurtzite structure. FVAD of p-type ZnO has also been achieved by Sb doping. The electrical conductivity of as-deposited n-type thin ZnO film is in the range 0.2-6 × 10− 5 Ω m, carrier electron density is 1023-2 × 1026 m− 3, and electron mobility is in the range 10-40 cm2/V s, depending on the deposition parameters: arc current, oxygen pressure, substrate bias, and substrate temperature. As the energy band gap of FVAD ZnO films is ∼ 3.3 eV and its extinction coefficient (k) in the visible and near-IR range is smaller than 0.02, the optical transmission of 500 nm thick ZnO film is ∼ 0.90.  相似文献   

19.
The investigation deals with the preparation of both anatase and rutile thin films from a sintered rutile target of TiO2 by pulsed laser ablation technique. Microstructural characterization of the sintered target was carried out using X-ray diffraction and AC impedance spectroscopy. Thin films of titania were deposited on (111) Si substrates at 673 K in the laser energy range 200-600 mJ/pulse at two different conditions: (i) deposition at 3.5 × 10− 5 mbar of oxygen, and (ii) deposition at an oxygen partial pressure of 0.1 mbar. The influence of laser energy and oxygen addition on the film growth has been studied. X-ray diffraction analysis of the films indicated that the films are single phasic and nano crystalline. Titania films deposited in the energy range 200-600 mJ/pulse at a base pressure of 5 × 10− 5 mbar are rutile with particle sizes in the range 5-10 nm, whereas the films formed at the oxygen partial pressure 0.1 mbar are anatase with particle sizes in the range 10-24 nm. In addition, at higher energies, a significant amount of particulates of titania are found on the surface of the films. The change in the microstructural features of the films as a function of laser energy and oxygen addition is discussed in relation with the interaction of the ablated species with the background gas.  相似文献   

20.
The energy deposition of high-intensity pulsed ion beam (HIPIB) into a titanium target was studied in TEMP-6 apparatus of bipolar-pulse mode using a self-magnetic field magnetically insulated ion diode (MID), where anode plasma was pre-generated by a first negative voltage and then mixed carbon ions and proton beam was extracted during the positive stage of the bipolar pulse. According with the time-of-flight (TOF) of ions, C+ arriving at the target 14 cm downstream from the MID was delayed by 55 ns relative to H+ at a peak accelerating voltage of 250 kV and the ion energy spectrum varied greatly, starting with a Gaussian profile at exit of MID and arriving with a multi-energy complex distribution. The TOF ion energy deposition of HIPIB showed that the energy deposition proceeded firstly in a deeper depth delivered by H+ and then moved towards a top layer dominated by C+. It is found that, the contribution of H+ to the energy deposition is negligible at the beam composition of 70%C+ and 30%H+. As a result, the gradient of energy deposition profile in target is negative by C+ deposition through the whole pulse. This unique feature of HIPIB energy deposition can lead to different thermal and dynamic effects as compared to previous studies of H+-abundant HIPIB, electron or laser beam, especially limiting subsurface heating that is concerned as a major cause of droplet ejection and surface cratering and waviness formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号