首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The process of phosphoric/boric/sulfuric acids anodizing was studied as a new pre-treatment for adhesive bonding of aluminum alloys. The microstructure and topography of the anodic films were examined using SEM and AFM, and the adhesive strength and corrosion behavior were studied with lap-shear test, wedge test and electrochemical technology. The results showed that by the process of phosphoric/boric/sulfuric acids anodizing a thicker film with high porosity and big pores can be obtained. The porous film was beneficial to improve the durability and lap-shear strength of the bonding joints. The thicker film can also provide better corrosion resistance. Compared with the films by boric/sulfuric acids anodizing and phosphoric acid anodizing, under humid and hot environments the phosphoric/boric/sulfuric acids anodic film showed better corrosion resistance, higher bonding strength and durability, and is a promising pre-treatment for adhesive bonding of aluminum alloys instead of the chromic acid anodizing process.  相似文献   

2.
The current paper explains the corrosion characteristics of the titanium alloy, IMI-834 in three different environments which simulates acidic, marine and industrial environments at various temperatures. The titanium alloy forms a protective oxide scale under different environmental conditions at lower temperatures. However, they do not form a protective oxide scale at higher temperatures. The corrosion rate in different environments and at different temperatures increases by about five times in acidic and industrial environments when the temperature increases by a factor of 2. While in marine environments, the corrosion rate was found to increase by two times when the temperature increases by two times. The pitting corrosion studies in different environments revealed that the alloy is resistant to pitting and crevice corrosion at lower temperatures but is susceptible at higher temperatures. The corrosion morphologies were correlated and the degradation mechanism that is leading the titanium alloy to fail under various environmental conditions was discussed. Finally, based on the results obtained with different techniques, the alloy was recommended to fabricate components intended to use in a variety of environmental conditions.  相似文献   

3.
The mechanism of coating growth during sparking anodizing of aluminium is probed by use of an electrolyte containing both silicate and phosphate ions, with subsequent determination of the locations of silicon and phosphorus species through the coating thickness. Importantly, the main alumina-based layer of the coating contains incorporated silicon and phosphorus species of differing distributions. Phosphorus species are primarily found in a region next to the metal, representing roughly about 30% of the layer thickness. Silicon species are located mainly above this region to the layer surface. New coating material is added in discreet amounts associated with breakdown events, which provide short-circuit paths through the layer. The growth processes within the discharge region result in separation of the silicate- and phosphate-derived species, which may relate to their different mobilities, dependent upon factors such as charge, size and bonding with other species. Further, silicon-rich material is deposited at the surface of the alumina-based layer, which is often encountered in spark anodizing in silicate electrolyte.  相似文献   

4.
Crevice corrosion of titanium and its alloys in 10% sodium chloride was investigated at 100°C with the aid of microelectrodes. Potential, pH and chloride ion concentration inside the crevice were monitored using an Ag/AgCl electrode, a tungsten microelectrode and a Ag/AgCl chloride ion selective microelectrode, respectively. The pH and Cl? concentrations within the crevice were calculated from the standard potential‐pH and potential‐log[Cl?] calibration curves. The effect of Mo on the crevice corrosion of titanium was also studied. The passivation behavior on the titanium and Ti‐15%Mo alloy was studied using electrochemical impedance studies. There was no apparent change in pH and Cl? ion activity inside the crevice for the alloy at 100°C, whereas a marginal decrease in pH and increase in Cl? ion concentration were observed for pure titanium. Thus pure titanium is susceptible to crevice corrosion in hot 10% NaCl solutions at 100°C. The chloride ion activity was found to be reduced for the alloy so that the pH inside the crevice increased. The corrosion reaction resistance (Rt) was found to increase with the addition of Mo as an alloying element. It also increases with externally applied anodic potential. Hence, Mo is an effective alloying element, which enhances the crevice corrosion resistance of titanium.  相似文献   

5.
The effect of annealing on the corrosion behaviour of the ultrafine-grained pure titanium (Ti) produced by high-ratio differential speed rolling was examined in a 0.5 M H2SO4 solution using potentiodynamic polarisation and weight loss methods. The results indicated that post-rolling annealing significantly affected the corrosion resistance of ultrafine-grained Ti. It was concluded that annealing treatments leading to a decrease in dislocation density and residual stress while maintaining an ultrafine grain size and strong basal texture can allow for the development of pure Ti with a good combination of high strength and high corrosion resistance.  相似文献   

6.
Crystallization of amorphous anodic films grown at constant current density on sputtering-deposited titanium, and Ti-Si and Ti-Al alloys, in ammonium pentaborate electrolyte, has been examined directly by transmission electron microscopy. In the case of titanium, anatase develops at relatively low voltage in the inner film region, formed by inward migration of oxygen species. In contrast, the outer film region, formed at the film/electrolyte interface, is composed of amorphous oxide only. Oxide crystals are particularly found near the plane, separating the two regions, which is located at a depth of 35-38% of the film thickness. Oxide zones, of size ∼ 1 nm, with a relatively ordered structure, developed at the metal/film interface, are considered to lead to transformation of the inner region structure. The incorporation into the film of either aluminium or silicon species suppresses the formation of crystalline oxide to much increased voltages. However, eventually nanocrystals form at ∼40% of the film thickness, probably originating from pre-cursor nuclei in the air-formed on the as-deposited alloy.  相似文献   

7.
电镀锌基合金的耐蚀性   总被引:6,自引:0,他引:6  
近年来,在表面处理方面,由于锌基合金呈现出很多优良的性能,特别是高的防护性,已越来越受到人们的青睐。对电镀锌基合金(主要是锌与铁族形成的合金)的性能进行了综述,并重点讨论了锌基合金的耐蚀性。  相似文献   

8.
表层纳米化处理可以改变材料表层的组织结构,提高材料的表面性能,而钛合金综合性能优异,有着广泛的应用,可以通过表层纳米化技术在钛合金表层制备出一定厚度的纳米层,进一步提升钛合金的耐腐蚀性能.本文介绍了表层纳米化技术和钛合金表层纳米化的作用机理,并综述了目前国内外表层纳米化对钛合金电化学腐蚀影响的研究进展,重点阐述了表层纳...  相似文献   

9.
M. Nakajima 《Corrosion Science》2009,51(7):1534-4740
Spark anodizing of titanium, Ti-6Al-4V and Ti-15V-3Al-3Cr-3Sn in alkaline aluminate electrolyte produces highly crystalline anodic films consisting mainly of Al2TiO5 with α- and γ-Al2O3 as minor oxide phases, irrespective of substrate composition. However, the apparent efficiency for film formation decreases in the following order: Ti-6Al-4V, titanium and Ti-15V-3Al-3Cr-3Sn. A large amount of aluminium species are incorporated from the electrolyte, probably by plasma-chemical reaction, and become distributed throughout the film thickness. This distribution indicates that the electrolyte penetrates near to the film/substrate interface through the discharge channels. Thus, the outwardly migrating aluminium ions under a high electric field can be present even in the inner part of the anodic films. Voids are developed at the film/substrate interface, particularly on the vanadium-containing alloys, reducing the adhesion of the anodic film to the substrate.  相似文献   

10.
系统研究了Ti-6Al-3Nb-2Zr-1Mo-x Ta(x=0,0.2,0.5,1.0,3.0,5.0)合金的微观组织、拉伸性能、夏比冲击韧性和耐海水腐蚀性。结果表明,经α+β两相区锻造后,Ti-6Al-3Nb-2Zr-1Mo-5Ta合金获得片层组织,Ti-6Al-3Nb-2Zr-1Mo-x Ta(x=0,0.2,0.5,1.0,3.0)均获得双态组织。XRD、TEM和选区电子衍射表明,在添加Ta元素后,Ti-6Al-3Nb-2Zr-1Mo-x Ta合金没有新相产生。对于双态组织Ti-6Al-3Nb-Zr-1M0-x Ta合金,随着Ta含量的增加,其Mo当量逐渐增加,导致其屈服强度、抗拉强度和显微硬度均有所提高。而Ta含量对冲击吸收功的影响规律与屈服强度和抗拉强度的影响规律相反,其大小与冲击断口剪切唇区面积一致。当Ta含量超过1.0%(质量分数)时,由于α和β相之间的标准平衡电位差逐渐增大,Ti-6Al-3Nb-2Zr-1Mo-x Ta合金的耐海水腐蚀逐渐降低。综合考虑强度、冲击韧性和耐海水腐蚀性能,Ti-6Al-3Nb-2Zr-1Mo-1Ta合金综合匹配性最好,具有良好的海洋工程应用潜力。  相似文献   

11.
钛合金波纹管超塑成形工艺研究   总被引:1,自引:0,他引:1  
首次开发利用氩气的压力胀形和轴向加载的复合超塑性工艺成形技术制造钛合金波纹管的新工艺,可加工多波U型钛合金波纹管。超塑成形采用多层模结构,用模具来控制波形。超塑成形加载过程分为胀形、合模和定型3个阶段,以使成形件的壁厚分布均匀。确定了筒坯的下料尺寸;给出了各个成形阶段胀形气压和保压时间的计算公式;通过超塑胀形实验成形了Ti-6Al-4V钛合金双波波纹管。  相似文献   

12.
电解加钛与熔配加钛对工业纯铝晶粒细化的作用   总被引:22,自引:2,他引:22  
对比研究了电解加钛,以Al-Ti和Al-Ti-B中间合金方式向工业纯铝熔配加钛以及向电解低钛铝合金中再熔配加Al-B中间合金的细化效果.结果表明,不同加钛方式对纯铝都有较强的细化作用; 在钛含量相同的条件下,电解加钛的晶粒细化能力明显高于熔配加Al-Ti中间合金的; 钛含量较低时,熔配加Al-Ti-B中间合金的细化效果略好于电解加钛的,钛含量较高时,二者的细化能力相当.向电解生产的低钛铝合金中再熔配加入Al-B中间合金,可明显改善晶粒细化效果,尤其在较低的钛含量时表现得非常明显.  相似文献   

13.
In this paper, the microstructure and hardness of two titanium alloys was determined and the results are presented and briefly discussed. Samples of the alloy for microstructural examination were prepared from the as-provided stock using standard metallographic procedures and then examined in a low magnification light optical microscope. Both microhardness and macrohardness measurements were made across the polished surfaces of the two titanium materials. Both the microhardness and macrohardness of the Ti–6Al–4V alloy was noticeably higher than the commercially pure counterpart. The intrinsic influence of alloy composition and secondary processing, i.e., annealing, on microstructural development is presented and hardness of the two alloys is highlighted. The role of microstructure in governing the hardness of the two titanium materials is discussed.  相似文献   

14.
The electrochemical behaviour of the Ti–13Nb–13Zr and Ti–6Al–4V ELI alloys with martensitic microstructures was investigated by polarization and electrochemical impedance spectroscopy (EIS) in Ringer’s solution. The impedance spectra were interpreted by a two time-constants equivalent circuit. Both investigated alloys showed high corrosion resistance, but the thin and uniform passive film on the Ti–6Al–4V ELI alloy surface was more protective. The inner barrier and outer porous layer were highly resistant and capacitive. However, thicker and more porous passive film on the Ti–13Nb–13Zr alloy surface may be beneficial for osteointegration. The suitable thermomechanical processing improved the corrosion resistance of Ti–13Nb–13Zr alloy.  相似文献   

15.
钛合金及其成形技术在民品中的应用前景   总被引:3,自引:0,他引:3  
吴海峰  张治民  李保成 《锻压技术》2003,28(4):44-46,61
对国内外近年来钛合金及其成形技术进行了介绍,分析了民品应用钛合金的障碍,提出了钛合金近净成形技术的发展将会有效地推动钛合金在民品中的应用。  相似文献   

16.
在电解液中添加HfO2对Ti-6Al-4V钛合金进行微弧氧化处理,通过表征微弧氧化膜表、截面形貌,膜层成分及电化学行为,并测量膜层厚度、硬度、粗糙度等参数来研究添加HfO2对钛合金微弧氧化膜层特性的影响。结果表明:添加HfO2后,微弧氧化膜层主要成分是Al2TiO5、TiO2和γ-Al2O3。较合适浓度的HfO2能促进成膜反应,改善微弧氧化膜的微观结构,提高膜层的厚度、硬度并降低表面粗糙度,且膜层试样具有双层膜结构,膜层试样的耐腐蚀性能好于原基体。HfO2浓度为3.0g/L时所获得的微弧氧化膜层综合性能最佳。  相似文献   

17.
Fatigue behavior has been studied on gas-nitrided smooth specimens of commercial pure titanium, an alpha/beta Ti-6Al-4V alloy, and a beta Ti-15Mo-5Zr-3Al alloy under rotating bending, and the obtained results were compared with the fatigue behavior of annealed or untreated specimens. It was found that the role of the nitrided layer on fatigue behavior depended on the strength of the materials. Fatigue strength was increased by nitriding in pure titanium, while it was decreased in the Ti-6Al-4V and Ti-15Mo-5Zr-3Al alloys. Based on detailed observations of fatigue crack initiation, growth, and fracture surfaces, the improvement and the reduction in fatigue strength by nitriding in pure titanium and both alloys were primarily attributed to enhanced crack initiation resistance and to premature crack initiation of the nitrided layer, respectively.  相似文献   

18.
The growth of a nanoporous anodic oxide on titanium and a Ti-20 at.% W alloy, both deposited by magnetron sputtering, in a glycerol/phosphate electrolyte at 453 K is reported. The oxide formed on titanium is a mixture of amorphous titania and anatase. However, that on the alloy is amorphous only and forms at increased efficiency, about 27%. The amorphous structure is considered to be stabilized by incorporated units of WO3, which are distributed uniformly throughout the anodic film. The growth of the porous oxides is suggested to be associated with loss of film species at the film/electrolyte interface at the base of pores, with new oxide forming exclusively at the metal/film interface by inward migration of O2− ions.  相似文献   

19.
Plasma-based low-energy nitrogen ion implantation, including plasma source ion nitriding/carburizing and plasma source low-energy ion enhanced deposition, has emerged as a low-temperature surface engineering technique for metal and alloy. In this paper, the pure metal Ti samples have been modified by the plasma source ion nitriding process at a process temperature of 700 °C for a processing time of 4 h. The nitrided Ti surfaces were constructed of a continuous and dense Ti2N compound layer about 2 μm thick and a 7-8 μm diffused layer. During tribological test on a ball on disk tribometer against the Si3N4 ceramic counterface, a low friction coefficient of about 0.3 and the faint wear volume were obtained for the nitrided Ti samples. The cyclic polarization curves of the nitrided Ti samples in 3.5% and 6.0% NaCl solutions showed that the improved pitting corrosion resistance with an increase of corrosion potential and a decrease of passive current, compared with that of the unnitrided Ti sample. The plasma source ion nitriding of the Ti samples provided the engineering surfaces for the functional applications with the combined improvement in wear and corrosion resistance.  相似文献   

20.
MgO coating is formed on magnesium alloy by anodic electrodeposition in 6 M KOH solution, whereas Mg(OH)2 coating is produced by anodization in 10 M KOH solution, which could be successively converted to MgO by calcination in air at 450 °C. The evolution of morphology, structure and composition of anodic film obtained on Mg alloy is investigated using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction (XRD). Potentiodynamic polarization measurements show that the as-grown MgO protective coatings are very effective in improving the corrosion resistance of magnesium alloy compared to bare metallic magnesium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号