首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multinary Ti-Al-N coatings are used for various applications where hard, wear and oxidation resistant materials are needed. Here, we prepare TiAlN/TiN nano-multilayer coatings with modulation period of ~ 20 nm in order to further improve the properties of Ti-Al-N coating. Annealing of both coatings up to 700 °C results in an increase in hardness due to the precipitation of cubic Al-rich domains by spinodal decomposition. Multilayer structure results in an increase in adhesion with substrates from ~ 72 N for Ti-Al-N single layer coating to 98 N for TiAlN/TiN nano-multilayer coating. Additionally, the interfaces of TiAlN/TiN nano-multilayer coating retard the outward diffusion of metal atoms (Al and Ti) and inward diffusion of O while exposing coatings in air atmosphere with elevated temperature, and thus improve its oxidation resistance. An improved machining performance regardless of continuous cutting and milling is obtained by TiAlN/TiN nano-multilayer coated inserts, which can be attributed to the combined effects of higher adhesion with substrates and better oxidation resistance.  相似文献   

2.
Four nitride coatings, TiN, TiAlN, AlTiN and CrAlN were deposited on YG6 (WC + 6 wt.% Co) cemented carbide by cathodic arc-evaporation technique. The friction and wear properties were investigated and compared using ball-on-disc method at high speed with SiC ball as a counter material. The tests were evaluated by scanning electron microscopy, X-ray diffractometer, energy dispersive X-ray, micro hardness tester and an optical profilometer. The results showed that TiN and TiAlN coatings presented lower friction coefficient and lower wear rate, and that high Al content AlTiN and CrAlN coatings didn't present better anti-wear properties in this test. Oxidation and abrasive wear were the main wear mechanism of TiN coating. In spite of the observation of micro-grooves and partial fractures, TiAlN possessed perfect tribological properties compared with the other coatings. High Al content increased the chemical reactivity and aroused severe adhesive wear of AlTiN coating. CrAlN coating presented better properties of anti-spalling and anti-adhesion, but abundant accumulated debris accelerated wear of the coating under this enclosed wear environment.  相似文献   

3.
Improved properties of Ti-Al-N coating by multilayer structure   总被引:1,自引:0,他引:1  
Multinary Ti-Al-N coatings are used for various applications where hard, wear and oxidation resistant materials are needed. Here, we prepare TiAlN/TiN nano-multilayer coatings with modulation period of ~ 20 nm in order to further improve the properties of Ti-Al-N coating. Annealing of both coatings up to 700 °C results in an increase in hardness due to the precipitation of cubic Al-rich domains by spinodal decomposition. Multilayer structure results in an increase in adhesion with substrates from ~ 72 N for Ti-Al-N single layer coating to 98 N for TiAlN/TiN nano-multilayer coating. Additionally, the interfaces of TiAlN/TiN nano-multilayer coating retard the outward diffusion of metal atoms (Al and Ti) and inward diffusion of O while exposing coatings in air atmosphere with elevated temperature, and thus improve its oxidation resistance. An improved machining performance regardless of continuous cutting and milling is obtained by TiAlN/TiN nano-multilayer coated inserts, which can be attributed to the combined effects of higher adhesion with substrates and better oxidation resistance.  相似文献   

4.
TiN基纳米复合超硬薄膜的摩擦磨损特性   总被引:4,自引:0,他引:4  
分别用磁控溅射、脉冲直流和射频等离子体辅助化学气相沉积(PCVD)技术得到了TiN、TiSiN、TiBN及Ti-C-N纳米复合超硬薄膜。用球盘式摩擦磨损试验考察了各种薄膜的磨损特性。结果表明此类纳米复合超硬薄膜的抗磨损性能比单纯的TiN薄膜有显著提高,但复合薄膜的室温摩擦因数较高,高温下摩擦因数也仅有轻微降低,可能由于表层生成减摩氧化层所致。特别对于TiSiN薄膜,随薄膜中Si含量的上升,其耐磨损性能有所下降。  相似文献   

5.
To improve the anti-adhesive wear properties of WC/Co-based TiAlN coatings, a laser substrate surface pretreatment was examined. The cemented carbide substrates were textured with a Nd:YAG laser, in three different scanning speeds, and then coated with a PVD TiAlN film. The anti-adhesive wear properties of each surface were evaluated via the ball-on-disk wear test and turning experiments. Additionally, characterization tests such as variable depth scratch test were also performed in order to verify the coating adhesiveness and to explain the results of the wear and machining tests. The results reveal that the anti-adhesive wear properties of the three TiAlN coated textured samples are significantly improved over that of the conventional one; the adhesion of TiAlN coatings is greatly improved by using Nd:YAG laser substrate pretreatment. Moreover, laser-scanning speed has a profound effect on the adhesion strength of the pretreated samples. In the experiments, the lowest scanning speed (5 mm/s) is most effective in providing a greater mechanical locking of the coatings upon the substrate and a more matching chemical property between substrate and coating materials, thus increasing the critical load of the coatings. Meanwhile, the adhered workpiece material layer is more stable on the pretreated sample irradiated at 5 mm/s. Hence, potential wear protecting properties of the in-situ formed layer can be conserved.  相似文献   

6.
沈同威  朱丽慧 《表面技术》2020,49(7):141-148
目的对比TiN/TiCN/Al_2O_3/TiN和TiN/TiCN/Al_2O_3/TiCNO两种多层涂层的组织性能。方法采用化学气相沉积(CVD)技术在硬质合金基体上沉积TiN/TiCN/Al_2O_3/TiN和TiN/TiCN/Al_2O_3/TiCNO两种多层涂层。通过X射线衍射仪(XRD)和扫描电子显微镜(SEM)分析涂层的物相和组织形貌,采用纳米力学测试系统测试涂层顶层的硬度和弹性模量,利用显微维氏硬度计和划痕仪分别测量涂层的显微硬度和结合强度,利用往复式多功能摩擦磨损试验机研究涂层的摩擦磨损性能。结果顶层TiN晶粒为柱状晶,顶层TiCNO晶粒呈细针状。与顶层TiN相比,顶层TiCNO硬度更大,抗塑性变形能力更强。与以TiN为顶层的多层涂层相比,以TiCNO为顶层的多层涂层表面粗糙度、摩擦系数较大,结合强度较低。当磨损只发生在顶层时,耐磨性取决于顶层涂层的性能,TiN/TiCN/Al_2O_3/TiN的磨损体积和磨损率为TiN/TiCN/Al_2O_3/TiCNO的1.2倍。当磨损进行到顶层与Al_2O_3层界面时,结合强度对耐磨性也有重要影响,TiN/TiCN/Al_2O_3/TiN的磨损体积和磨损率是TiN/TiCN/Al_2O_3/TiCNO的82%。结论与TiN/TiCN/Al_2O_3/TiN相比,TiN/TiCN/Al_2O_3/TiCNO的顶层TiCNO硬度较大,抗塑性变形能力强,其顶层耐磨性较好。改善TiN/TiCN/Al_2O_3/TiCNO多层涂层表面粗糙度和结合强度将进一步提高该涂层的摩擦磨损性能。  相似文献   

7.
In this study, TiN and TiAlN coatings were deposited on AISI 316 L stainless steel substrates by PVD techniques. The composition and crystalline structure of the as-deposited coatings were analyzed by energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD) methods, respectively. The corrosion resistance studies of TiN-coated and TiAlN-coated samples were carried out in 0.9 wt % NaCl and SBF solutions using the electrochemical potentiodynamic polarization method and the wear behavior was evaluated with the ball-on-disk wear method at a sliding speed rate of 0.3 m/s under 2.5 N load in a dry medium. It was found that both TiN and TiAlN coatings exhibited relatively good corrosion resistance, however, TiAlN coatings showed a better corrosion resistance than TiN coatings. The TiAlN coating contributes positively against corrosion and wear behavior by increasing the surface hardness and by decreasing the friction coefficient of AISI 316 L stainless steel, respectively.  相似文献   

8.
The degradation of Ti-based coatings is known to be due to the formation of titanium oxide (TiO2) at their surfaces. In this study, wear and thermal oxidation behaviors of various magnetron sputtered Ti-based thin films were studied after static oxidation and sliding wear. The oxidized surfaces after the static oxidation and the wear debris generated from pin-on-disc wear tests with alumina ball were characterized to identify the compounds, particularly titanium oxides, to gain a better understanding of the tribochemical reactions. The coatings that were examined include TiN, TiCN (N rich), TiCN (C rich), TiAlN, AlTiN, TiSiN, and TiCNO thin films. These coatings were characterized using Raman spectroscopy, scanning electron microscopy, and X-Ray diffractometer. The results show that TiSiN and AlTiN have the highest oxidation resistance, comparing with other coatings. As for the analyses of wear debris, all of the Ti-based coatings are worn by the mechanism of forming TiO2, except AlTiN. AlTiN is worn by ploughing wear.  相似文献   

9.
Cutting performance of PVD-coated carbide and CBN tools in hardmilling   总被引:3,自引:0,他引:3  
In this study, cutting performance of CBN tools and PVD-coated carbide tools in end-milling of hardened steel was investigated. In high-speed dry hardmilling, two types of CBN tools were applied: the CBN-rich type and an ordinary one. In the case of relatively low-speed milling, on the other hand, a few coated carbide tools were selected where four kinds of coating films, TiN, TiCN, TiAlN and multi-layered TiAlN/AlCrN, were deposited on the K10 and P30 grade carbide. The cutting performance was mainly evaluated by tool wear, cutting temperature, cutting force and surface roughness. In dry cutting of hardened carbon steel with the ordinary CBN tool, the cutting tool temperature rose rapidly with increase in cutting speed; and tool temperature reached approximately 850 °C at the cutting speed of 600 m/min. In the case of the CBN-rich tool, the cutting temperature decreased by 50 °C or more because of its high thermal conductivity. It is remarkable that tool wear or damage on a cutting tool was not observed even when the cutting length was 156 m in both CBN tools. In the case of coated carbide tools, the temperatures of TiN-, TiCN- and TiAlN-coated carbide tools rose as cutting proceeded because of the progress of tool wear, but that of TiAlN/AlCrN-coated carbide tool hardly rose due to little tool wear. When the base material was K10 grade carbide, tool temperature was lower than that of P30 with any coating. The tool flank wear depends considerably on hardness and oxidizing temperature of the coating film.  相似文献   

10.
This work employs the PVD process to deposit coatings of single layer TiN, binary layer TiN/TiCN, multilayer TiN⇔⇔N, and sequenced TiN⇔CN⇔N multilayer coatings with variable individual TiN-layer and TiCN-layer thicknesses on tungsten carbide disks and inserts. Also investigated are the fracture mechanisms and the influence of sequence and thickness of these coatings on cylinder-on-disk, line-contact wear mode and ball-on-disk, point-contact wear mode through SRV reciprocating wear tests. Actual milling tests identify wear performance. Experimental results indicate that the coating with a total thickness of 7 Μm and layer sequence TiN/TiCN/TiN exhibits good wear resistance on SRV wear test and milling test. The thickest multilayer TiN/Ti/TiN coating, although having the highest hardness, has the worst wear resistance for all tests. No-tably zero-wear performance was observed for all coating disks under cutting fluid lubricated condition due to the transferred layers formed between the contact interface.  相似文献   

11.
目的为了提高涂层硬质合金刀具的切削性能,研究了物理气相沉积PVD法制备的涂层硬质合金铣刀在高速干式环境下的铣削性能。方法采用阴极电弧技术制备了TiN、TiAlN以及TiAlSiN涂层硬质合金铣刀刀头,通过一同沉积涂层的硬质合金圆片,间接测量得出涂层的显微硬度、厚度和平均摩擦系数,并以CoCrMo合金为切削对象,进行了PVD涂层与无涂层刀具高速铣削下的对比试验。结果TiAlSiN显微硬度最高达3800HV,摩擦系数达0.3,TiAlN涂层平均膜厚为2μm,间接测得TiN、TiAlN以及TiAlSiN涂层的结合力依次为60、58、42N。在三者的切削性能中,TiAlSiN涂层的切削性能比TiAlN和TiN涂层的好,同等切削参数时,TiN刀具的高速铣削时间最短,TiAlSiN涂层的平均磨损值为0.1895,TiN的平均磨损值为0.3047。结论涂层中添加Al、Si,极大地提高了刀具的使用性能,改善了刀具切削过程中的耐磨性、红硬性,极大地延长了刀具的使用寿命。TiAlSiN涂层的硬度高,耐磨损性好,切削性能好,适合高速铣削加工。  相似文献   

12.
In order to investigate the microstructure of TiN and TiAlN coatings and their effect on the wear resistance of Mg alloy, TiN and TiAlN coatings were deposited on AZ91 magnesium alloy by multi-arc ion plating technology. TiN and Ti70Al30N coatings were prepared on the substrate, respectively, which exhibited dark golden color and compact microstructure. The microstructures of TiN and Ti70Al30N coatings were investigated by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The micro-hardness and wear resistance of TiN and Ti70Al30N coatings were investigated in comparison with the uncoated AZ91 alloy. The XRD peaks assigned to TiN and TiAlN phases are found. The hardness of TiN coatings is two times as high as that of AZ91 alloy, and Ti70Al30N coating exhibits the highest hardness. The wear resistance of the hard coatings increases obviously as result of their high hardness.  相似文献   

13.
Coatings like TiN or TiAlN are well established as hard and wear resistant tool coatings. These coatings often are prepared by PVD techniques like arc evaporation or d.c. magnetron sputtering. Typical micro hardness values of such hard coatings are in the range of 30 GPa. Compared to d.c. magnetron sputtering processes the pulsed magnetron sputter deposition technique could be shown as a clear advancement. Furthermore pure TiAlN hard coatings as well as TiAlN coatings modified by addition of elements like Si and Cr were prepared in order to improve the coating properties using the pulsed magnetron sputter technique in a batch coater equipped with 4 targets. Coatings prepared with the pulsed sputter process showed both high hardness and high wear resistance. The application potential of pulsed sputtered TiAlN coatings is demonstrated by turning test results of coated cemented carbide cutting inserts.Beside hardness and wear, other properties like adhesion or high temperature stability were determined. Cross sectional SEM images revealed the growth structure in dependence of the applied substrate bias and of the added elements. The chemical composition of the coatings was investigated by electron microprobe analysis and the phase and crystal size were determined by X-ray diffraction. Using the pulsed magnetron sputter process the coating properties, especially the hardness and the morphology, could be significantly improved. With indentation hardness values in the range of 40 GPa the region of super hard materials could be reached.  相似文献   

14.
AISI H13 die steel substrates were low pressure gas nitrided to different thicknesses and hardness values. Nitrided and non nitrided samples were subsequently coated with bi-layer TiAlN/TiN to two different thicknesses. The hardness was measured across the coating thickness and observed to be higher when a thinner coating was deposited over nitrided substrates. The hardness behavior across relatively thin (3 μm) coatings was not affected by the nitrided surface hardness or thickness of the nitride layer in the range of values examined here (80-150 μm). On the other hand, the hardness behavior of thicker coatings (8um) was affected by the nitrided layer, as the thicker coatings were soft due to their columnar structure. The specific wear rate of the duplex coatings was affected by the coating thickness and hardness distribution across the coating system.  相似文献   

15.
The multilayer coating, Ti10%-C:H/TiC/TiCN/TiN, was deposited on cemented tungsten carbide (WC-Co) substrate by an unbalanced magnetron sputtering system. Tribological characteristics of this coating were compared with the coatings of TiN, TiCN, and TiC/TiCN/TiN deposited on WC-Co substrates and the WC -Co substrate itself. The coating displayed excellent tribological properties, i.e., both low value and smooth curve of friction coefficient, and also, compared with the other tested materials, yielded the lowest wear depth when sliding against bronze under dry conditions. The coating thus protects against the high wear experienced when Ti-based coatings rub against copper alloy.  相似文献   

16.
High-speed grooving with applying MQL   总被引:2,自引:2,他引:0  
The performance of minimum quantity lubrication (MQL) in high-speed cutting was evaluated in grooving 0.45%C carbon steel with a carbide tool coated with TiC/TiCN/TiN triple coating layers. MQL with supplying vegetable oil at a small and constant rate of 7 ml/h reduced the corner and flank wears more effectively than a solution type of cutting fluid at high cutting speeds of 4 and 5 m/s. In MQL grooving, the wears decreased drastically with increasing the pressure of air supply. This suggested that the air supply took an important role in transporting the oil mist to the interface between the flank wear land and machined surface. Then, a controlled oil mist direction (COD) tool was devised and its performance was proved to be high at a reduced rate of oil supply.  相似文献   

17.
通过优化电弧离子镀工艺参数改善TiAlN涂层结构及性能对TiAlN涂层应用具有重要的实用价值。本文利用脉冲偏压电弧离子镀制备了TiAlN涂层,研究了偏压占空比对TiAlN涂层结构及性能的影响,结果发现:随着占空比增加,涂层表面缺陷密度和表面粗糙度先降低后增大,占空比为70%时,制备的涂层表面缺陷密度和表面粗糙度最低。随着占空比增加,涂层的硬度和耐磨性得到明显改善,但占空比超过50%后继续增加占空比反而降低了涂层的硬度和耐磨性。TiAlN涂层与Si3N4球对磨时的主要磨损机制为黏着磨损和氧化磨损。  相似文献   

18.
In this work, a suitable cermet compositions based on TiCN-SiC-TiN-Cr3C2-Co-B4C is identified for cutting tool purpose. The cermets were sintered using spark plasma sintering with the addition of different weight percentages of B4C (5%, 10%, 15%) in TiCN - SiC - TiN - Cr3C2 - Co cermets. The cermets were subjected to the annealing process at three different temperatures of 600 °C, 800 °C, and 1000 °C for a constant soaking time of 4 h to study their thermal stability. All the cermets' compositions showed good thermal stability up to 800 °C and 55% TiCN – 15% SiC – 5% TiN – 5% Cr3C2–10% Co – 10% B4C cermets showed better thermal stability up to 1000 °C. There was a change in microstructure and formation of the oxide phases in the cermets during the high temperature (1000 °C) annealing process and overall lead to a decrease in hardness. The sintered cermets were also subjected to sliding wear in the pin on disk apparatus. EN31 steel disk was used as a counter disk. The wear testing was done at different loads (20 N, 25 N, 30 N, 35 N) and at different sliding velocity (0.55 m/s, 1 m/s, 1.5 m/s, 2 m/s) with a constant track distance of 1000 m. Wear rate was at its highest value of 9.74 × 10−7 mm3/Nm for the cermet 65% TiCN - 15% SiC - 5% TiN - 5% Cr3C210% Co and the lowest wear rate noted was 1.18 × 10−7 mm3/Nm for cermet 55% TiCN - 15% SiC - 5% TiN - 5% Cr3C210% Co – 10% B4C and the B4C addition has improved the wear resistance of the cermets.  相似文献   

19.
The corrosion protection characteristics of titanium nitride (TiN) and titanium–aluminum nitride (TiAlN) coatings produced on cemented carbon steel targets were investigated in aqueous sodium chloride solution. All coatings were produced by cathodic arc plasma deposition. The results indicated that it was possible to follow the corrosion behavior of the coated systems over a period of 300–900 h of immersion. It was found that the TiN and TiAlN coatings had a lower corrosion rate (current density), about three orders of magnitude lower than the untreated steel substrates. The metal substrate was actually passive in these experimental conditions, and exhibited an electrochemical impedance response that could be described by means of the same equivalent circuit than for the coating. Nevertheless, the analysis of the impedance parameters allowed for direct information concerning the enhancement of the corrosion resistance of the coated system as compared to the passive uncoated metal substrate to be extracted. The major corrosion mechanism for the coated samples arises from electrolyte penetration in the pores of the deposits, which may eventually lead to the development of localized forms of corrosion.  相似文献   

20.
选用自制烧结的YG11C/TaC_p硬质合金作基体,介绍了采用电弧离子镀在试样上沉积TiN、TiCN和ZrN涂层的工艺.利用维氏硬度计、扫描电子显微镜、X射线衍射仪表征了涂层的力学性能和组织结构.通过比较切削实验中刀具的磨损性,得出涂层刀具有更好的耐磨性能.研究表明,电弧离子镀TiN等涂层能使硬质合金刀具获得更好的使用性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号