首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TiN-coated metal-on-polymer hip prosthetic pair has the potential to reduce wear debris of UHMWPE (ultra-high molecular weight polyethylene) and to prevent metallic-ion-induced cytotoxicity. However, high quality and adherent film is a key to the clinical success of hip prostheses. In this study, titanium nitride (TiN) films were deposited on stainless steel using plasma immersion ion implantation & deposition (PIII&D) technique to create high-quality film and an adherent interface. The chemical state and composition were analyzed by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and energy dispersive spectroscopy (EDS). The mechanical properties of the films were characterized using a micro-hardness tester and a pin-on-disk wear tester, and an x-ray diffractometer (XRD) was used for a crystallographic analysis. The PIII&D-treated TiN films showed a stoichiometric and (200) preferred orientation and micro-hardness up to 150 % higher than untreated film. A TiN-coated specimen using the PIII&D process also showed less UHMWPE wear compared to untreated specimens. The volumetric wear rate of UHMWPE could be reduced by as much as 42 % compared to when Co-Cr alloy was used. The results of this study show that advanced TiN-coating via the PIII&D process is a viable means of reducing UHMWPE wear in the metal-on-polymer bearing couple.  相似文献   

2.
ZrN and TiN films have been deposited on Si substrates without additional heating using plasma based ion implantation & deposition (PBII&D) with pulse voltage from 0 to 5 kV. High quality columnar films have been obtained in both systems with a slight nitrogen deficiency. For ZrN, a marked reduction of the growth rate was observed when depositing with pulse bias, which was not observed for TiN, caused presumably by different partial sputter yields. A transition of the texture from (111) to (200) is again present in both systems, however with the transition occurring at a different pulse bias. Hardness values of 18-20 GPa and 22-24 GPa have been observed for TiN and ZrN, respectively.  相似文献   

3.
This investigation examined how titanium ion implantation pre-treatment affects the residual stress of TiN coatings on M2 high-speed steel. Ions were implanted by metal plasma ion implantation. The adhesion strength of the TiN coatings was enhanced by pre-treatment that implanted Ti into the M2 tool steel substrate. The implanted substrate functioned as a buffer layer between the deposited TiN and the tool steel substrate, resulting in variations of the residual stress. The residual stress determined by glancing-angle XRD demonstrates that the deposited TiN films on ion-implanted substrates exhibited reduced compressive stress, from − 3.95 to − 2.41 GPa, which corresponded to a decrease in the grain size of the TiN films. The texture of the TiN film was clearly transformed from the preferred orientation of (220) to (111), subsequently enhancing wear resistance against a tungsten ball.  相似文献   

4.
A multi-purpose high voltage pulse (HVP) supply was developed for PIII&D process, to provide bias voltage of DC, HVP and HVP + DC to the workpiece. The pretreatment (sputtering cleaning) of the workpiece, ion implantation, hybrid PIII&D or normal deposition, can be finished in one vacuum cycle. In the system a vacuum bend-guide microwave ECR source is used to produce plasma. Ti/TiNx coating was prepared in this biasing manner with the PIII&D system. The result shows that the adhesion of the coating is enhanced with the HVP + DC composite biasing when the pulse amplitude and the DC voltage are chosen properly. The deposition rate can be maintained relatively high at an intermediate level between the conditions with pure HVP and DC bias. This work shows that the composite biasing is an effective method to improve the coating's properties in PIII&D process.  相似文献   

5.
Titanium oxide films synthesized by plasma immersion ion implantation and deposition (PIII&D) were micro-patterned using argon plasma etching. Wells containing organized arrays of square holes of different depths separated by gaps of 25 μm were produced on the surface of the titanium oxide by etching for 30, 60, 90, and 120 min. The surface wettability and tension of the samples were evaluated. Human umbilical vein endothelial (HUVE) cells were cultured on both smooth and patterned surfaces. The effects of surface micro-patterning on the behavior of the HUVE cells were investigated. Our results show that the titanium oxide prepared by PIII&D has good cyto-compatibility and the micro-patterns influence both the surface energy and cell behavior. Our results demonstrate the feasibility of using micro-patterned surfaces to modulate HUVE cell behavior.  相似文献   

6.
ZrN及其多层膜的性质和耐腐蚀性能   总被引:12,自引:0,他引:12  
用磁过滤电弧制备了ZrN和ZrN/TiN多层膜,磁控溅射制备了ZrN薄膜。结果表明,ZrN/TiN多层膜,由于纳米多层化作用,硬度高于ZrN和TiN的26GPa和2lGPa,平均值达到34.5GPa。X射线衍射分析表明,ZrN/TiN多层膜由ZrN和TiN组成。过滤电弧制备的ZrN和ZrN/TiN多层膜的结合力为8lN和77N,磁控溅射制备的ZrN薄膜的结合力为26N。极化曲线的结果显示,过滤电弧制备的ZrN和ZrN/TiN多层膜的耐腐蚀性显著优于磁控溅射制备的ZrN薄膜,讨论了两种方法制备薄膜性能差异的原因。  相似文献   

7.
采用PVD和CVD技术制备Cu/TiN/PI试样,研究表明,TiN薄膜可以有效地阻挡Cu向PI基板内部扩散,CVD工艺制备的Cu膜内部残余应力很小,Cu膜有相对高的结合强度;而PVD制备的Cu膜,在有TiN阻挡层存在的情况下,Cu膜内存在拉应力,拉应力降低了Cu膜结合强度,300℃退火可以消除膜内残余应力,结合强度提高。  相似文献   

8.
The effect of plasma immersion ion implantation and deposition (PIII&D) titanium carbide (TiC) film on the rolling contact fatigue (RCF) life of coated on AISI52100 bearing steel surface is studied experimentally. Testing include plan-view optical microscopy (OM), X-ray diffraction (XRD), friction and wear behaviors, rolling contact fatigue life and nano-indentation measurements. XRD patterns show that titanium carbide phase is formed in the film, and the microhardness of treated samples is higher than that of substrate. Rolling contact fatigue failure tracks were observed using conventional light microscope. Surface wear and adhesive delamination existed. Results indicate that the maximum RCF life of the treated sample prolong by 6.5 times at a Hertzian stress level of 5.1 GPa and 90% confidence level, respectively. Comparison with the substrate, the maximum microhardness of treated specimen is increased by 28.4%. The friction coefficient decreased from 0.95 to 0.15 under identical wear conditions. This remarkable fatigue performance appears to be due to a combination of improved microstructure, adhesion, hardness and surface topography. Therefore, the PIII&D is regarded as one of the promising technologies for improving the RCF life of bearing.  相似文献   

9.
In this work, a series of depositions of titanium nitride (TiN) films on M2 and D2 steel substrates were conducted in a Triode Magnetron Sputtering chamber. The temperature; gas flow and pressure were kept constant during each run. The substrate bias was either decreased or increased in a sequence of steps. Residual stress measurements were later conducted through the grazing X-ray diffraction method. Different incident angles were used in order to change the penetration depth and to obtain values of residual stress at different film depths. A model described by Dolle was adapted as an attempt to calculate the values of residual stress at each incident angle as a function of the value from each individual layer. Stress results indicated that the decrease in bias voltage during the deposition has produced compressive residual stress gradients through the film thickness. On the other hand, much less pronounced gradients were found in one of the films deposited with increasing bias voltage.  相似文献   

10.
The effect of deposition processes on the distribution of residual stresses in the thickness of the (Ti,Al)N films prepared by arc ion plating (AIP) was investigated in the present work, which indicates that the stress distribution exhibits a “bell” shape and the maximum compressive stress appears in the layer near the surface. The residual stress increases with the thickness of a film and the substrate bias voltage, respectively. The stress distribution can be altered, and the adhesion of the film/substrate can be improved by optimizing the deposition parameters. Finally, a film with a thickness of 7.57 μm was successfully directly deposited on the substrate through optimizing the bias voltage.  相似文献   

11.
12.
Hard coatings like titanium nitride (TiN) normally contain a high degree of internal stress (usually compressive in-plane parallel with the surface) owing to growth defects developed during the deposition process and thermal mismatch effects after final cooling; it is, therefore, difficult to produce single-layer TiN coatings thicker than 6-7 μm, without adhesion problems. In the present study, thick coatings (i.e. > 10 μm) have been achieved by alternate multilayering of TiN with Ti interlayers, leading to a tougher and less-stressed film. However, having a constant distribution of titanium interlayer thickness is not necessarily the best solution to achieve maximum performance in terms of wear resistance and hardness. The residual stress distribution along the thickness is unlikely to be constant with the inner layers being more stressed due to a greater amount of thermal differential strain. Following this guideline, a series of numerical simulations was performed in order to calculate the residual stress through thickness distribution due to the deposition process. Three sets of multilayered Ti/TiN coatings having both constant and variable Ti interlayer thickness were modelled and deposited, using a reactive arc PVD process. Mechanical and tribological properties were characterized using static and depth sensing Vickers micro-hardness indentation tests, rotating wheel (dimpling grinder) abrasive wear tests and Rockwell C adhesion tests. Coating interface characterizations were made by SEM-EDS. Results showed that adhesion can be significantly improved by adopting a titanium through thickness quantity increasing towards the interface: an optimized distribution allows also higher hardness and wear resistance to be obtained, as it requires a lower total amount of titanium to obtain good adhesion properties.  相似文献   

13.
Thin TiN films were deposited at ambient temperature on silicon substrates using the filtered cathodic vacuum-arc technique. The nitrogen flow rate, deposition rate and substrate bias were varied systematically to investigate their effect on the mechanical and structural properties of the films. It was found that an increase in the nitrogen flow rate results in an increased hardness, surface roughness and grain size. The increased ion bombardment due to the higher amount of nitrogen ions makes film nucleation favourable on the denser (111) orientation. An increase in deposition rate results in an increase of stress, hardness and surface roughness. This is due to the increase in the momentum transfer resulting in film densification. Increasing the negative substrate bias decreases both the film stress and the hardness, which can be attributed to ion-induced stress-relief behaviour at higher momentum-energy transfer. The results demonstrate the dominant influence of ion-energy flux on the properties of the films.  相似文献   

14.
Copper oxide films were deposited by plasma based ion implantation and deposition using a copper antenna as rf sputtering ion source. A gas mixture of Ar + O2 was used as working gas. During the process, copper that was sputtered from the rf antenna reacted with oxygen and was deposited on a silicon substrate. The composition and the chemical state of the deposited films were analyzed by XPS. The structure of the films was detected by XRD. It is observed that Cu2O film has been prepared on the Si substrate. It is found that the microstructure of the deposited film is amorphous for the applied voltage of − 5 kV. The surface layer of the deposited films is CuO. This is because the surface layer absorbs the oxygen from ambient air after the treated sample was removed from the vacuum chamber. An appropriate applied voltage, 2 kV under the present conditions, brings the lowest resistance. It is also seen that the maximum absorbance of the deposited films moves to a lower wavelength with increased applied voltage.  相似文献   

15.
Nitride films are deposited from a single equiatomic AlCrMoSiTi target by reactive DC magnetron sputtering. The influence of the substrate bias and deposition temperature on the coating structure and properties are investigated. The bias is varied from 0 to − 200 V while maintaining a substrate temperature of 573 K. And the temperature is changed from 300 to 773 K whilst maintaining a substrate bias of − 100 V. From X-ray diffraction analysis, it is found that all the as-deposited coatings are of a single phase with NaCl-type FCC structure. This is attributed to the high mixing entropy of AlN, CrN, MoN, SiN, and TiN, and the limited diffusion kinetics during coating growth. Specific aspects of the coating, namely the grain size, lattice constant and compressive stress, are seen to be influenced more by substrate bias than deposition temperature. In fact, it is possible to classify the deposited films as large grained (~ 15 nm) with a reduced lattice constant (~ 4.15 Å) and low compressive residual stresses for lower applied substrate biases, and as small grained (~ 4 nm) with an increased lattice constant (~ 4.25 Å) and high compressive residual stresses for applied biases of − 100 V or more. A good correlation between the residual stress and lattice constant under various deposition conditions is found. For the coatings deposited at − 100 V, and at temperatures above 573 K, the hardness could attain to the range of 32 to 35 GPa.Even after annealing in vacuum at 1173 K for 5 h, there is no notable change in the as-deposited phase, grain size or lattice constant of the coatings but an increase in hardness. The thermal stability of microstructure is considered to be a result of the high mixing entropy and sluggish diffusion of these multi-component coatings. For the anneal hardening it is proposed that the overall bonding between target elements and nitrogen is enhanced by thermal energy during annealing.  相似文献   

16.
Titanium nitride (TiN) films up to 100 nm thickness were deposited by reactive magnetron sputter deposition on silicon substrates while measuring the film force in situ. The energy per deposited atom supplied to the growing film by ion bombardment was varied in two ways: a) by changing the deposition pressure and b) by changing the bias voltage applied to the substrate. Both variations affected the film force, the microstructure and the film texture. More energetic deposition conditions led to a continuous build up of stress, a dense microstructure and a 001 film texture almost independent of film thickness. These findings lead us to conclude that a 001 film texture is more susceptible to stress generation by an ion bombardment than a 111 film texture. Further, from the similar effect of a pressure increase and a bias voltage decrease on the film growth and characteristics we identify ion-neutral charge transfer collisions in the substrate sheath as the mechanism by which the deposition pressure influences film characteristics.  相似文献   

17.
目的 比较Si和316L基片上TiN薄膜的微观结构和应力,分析基片材料和基片初始曲率对薄膜应力的影响.方法 采用电弧离子镀技术在Si基片和316L基片上制备了TiN薄膜,实测了薄膜应力,通过XRD、SEM、TEM等方法对薄膜的微观结构进行了分析.运用有限元分析技术,以结构力学为原理,分别对不同初始曲率的Si基片和316...  相似文献   

18.
The growth processes of carbon films deposited using two techniques (sputtering and RF plasma assisted chemical vapor deposition, PACVD), and the effects of stacking these films in a multilayered structure on their mechanical and adhesion properties were studied. The films deposited by the two techniques differed in composition, structure and hardness. They are termed “hard C” and “soft C” according to their synthesis process, sputtering and PACVD respectively. By means of stress measurements and angle-resolved X-ray photoelectron spectroscopy, the growth mechanism of the films was characterized when they were deposited on a silicon substrate and when one kind of carbon film was deposited onto the other kind, in order to simulate a multi-layer film formation. This study evidenced the effect of converting the individual layer surfaces into interfaces when building a multilayer film. On one hand, this conversion appeared to increase the compressive stress of the multilayer films for the lowest periodicity (14 nm and 7 nm of half-period). On the other hand, a strong correlation between the stress resulting from multilayering and the film elasto-plastic properties was found. A hardening effect, put in evidence by applying a nano-indentation “plasticity index”, was obtained for the most layered films (i.e. with the lowest modulation period) and this effect is discussed in relation with the existing models for multi-layer strengthening. The film adhesion to polyethylene terephtalate (PET) substrates was investigated. A beneficial effect of multi-layering on film adhesion was significant only when the half-width period went down to 14 nm and 7 nm. The adhesion improvement cannot be related to a reduced internal stress, since the most stressed films were also the most adherent. Instead the compressive stress found in the films with the lowest periodicity is thought to induce a stronger bonding of the soft C layer (polymer-like) to the PET substrate and to the hard C layers, through chain entanglement across the interface.  相似文献   

19.
热处理对PI基板铜薄膜金属化TiN阻挡层的影响   总被引:1,自引:0,他引:1  
聚酰业胺(PI)材料具有介电常数低,分解温度高及化学稳定性好等优点,是很有前途的电子封装材料。Cu具有低的电阻和高的抗电迁移能力,足PI基板金属化的首选材料。采用物理气相沉积(PVD)方法在PI基板上沉积Cu薄膜,利用TiN陶瓷薄膜阻挡Cu向PI基板内部扩散。研究热处理条件下TiN陶瓷薄膜阻挡层的阻挡效果、Cu膜电阻变化以及Cu膜的结合强度,俄歇谱图分析表明TiN可以有效地阻挡Cu向PI内的扩散。300℃热处理消除了Cu膜内应力,提高了Cu膜的结合强度。  相似文献   

20.
Nanometer-scale-thick, polymer-like coatings deposited using the molecular layer deposition (MLD) technique constitute a new class of materials. The modulus and hardness of aluminum alkoxide (“alucone”) films grown using either homobifunctional or heterobifunctional reactants were measured using nanoindentation. Because the coatings are brittle and possess a significant tensile film stress immediately after deposition, the influence of film stress on the indentation measurements was quantified using a numerical analysis protocol. The film stress and coefficient of thermal expansion for alucone were determined using the wafer curvature method. Film stress was found to stabilize within the first thermal cycle, demonstrating a repeatable hysteresis thereafter. Curvature/time measurements on coated microcantilever beams indicated that the most significant evolution in film stress for alucone occurred during the initial 2 weeks of storage in the ambient environment. The temporal behavior is attributed to the change in thickness and/or modulus of alucone, and is consistent with the film stress becoming more compressive over time. An encapsulating alumina film, coated using the atomic layer deposition technique, was found to suppress the evolution of stress within alucone. The studies here suggest that the alucones have a greater elastic modulus than traditional polymers, are at present quite brittle and are prone to environmental influence. The MLD technique, however, possesses a rich wealth of options that enable the modulus, adhesion and chemical stability of the coatings to be tailored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号