首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a novel liquid precursor plasma spraying (LPPS) process was used to deposit Si, Mg, CO3 2− substituted hydroxyapatite (HA) coatings (alone and cosubstituted) onto Ti-6Al-4V substrates. Salts of silicon, magnesium, and carbonate elements were directly added into the HA liquid precursor for subsequent plasma spraying. The phase composition, structure, and morphology of all HA coatings were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The results indicated that the trace elements were successfully incorporated into the HA structure and nanostructured coatings were obtained for all doped HA formulations. The incorporation of trace elements into the HA structure reduced its crystallinity, especially when silicon, magnesium and carbonate ions entered simultaneously into the HA structure. FTIR spectra showed that the Si-HA and Mg-HA coatings had decreased intensities in both the O-H and P-O bands and that the CO3 2−-HA coating was mainly a B-type carbonate-substituted HA. The results showed that the LPPS process is an effective and simple method to synthesize trace element substituted biomimetic HA coatings with nanostructure.  相似文献   

2.
Nanosized hydroxyapatite (HA) powders were prepared by a chemical precipitation method and electrophoretically deposited on Ti6Al4V substrates. The powders were calcined before the deposition process in order to obtain crack-free coating surfaces. As an inner layer between Ti6Al4V substrate and HA coating, nanosized titanium dioxide (TiO2) powders were deposited, using different coating voltages, in order to connect substrate and HA tightly. Moreover, this layer is considered to be acting as a diffusion barrier, reducing the HA decomposition due to ion migration from the metal substrate into the HA. After the sintering stage, adhesion strengths of coatings were measured by shear testing, phase changes were studied by X-ray diffraction, and coating morphology was analyzed through scanning electron microscopy observations. Results showed that usage of the TiO2 inner layer prevented HA decomposition. Furthermore, decreasing the voltage used in TiO2 deposition resulted in crack-free surfaces and increased adhesion strength of the overall coating.  相似文献   

3.
采用电沉积方法在钛表面制备氧化石墨烯-羟基磷灰石(Graphene oxide/Hydroxyapatite,GO/HA)复合涂层,通过调整GO的浓度,研究GO对所得涂层晶体结构及生物学性能的影响。采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)仪、傅里叶变换红外光谱(FTIR)、拉曼光谱分析所得涂层的表面形貌和物相构成,用SEM观察涂层表面MG63成骨样细胞生长情况。结果表明,电沉积法可在钛表面制备GO/HA复合涂层,且随GO浓度增加,HA结晶度增加。此外,复合涂层较单纯HA涂层更能促进成骨样细胞早期粘附。  相似文献   

4.
Two kinds of phosphate conversion coatings, including zinc phosphate coating and zinc-calcium phosphate coating, were prepared on the surface of AZ31 alloy in phosphate baths. The morphologies of these coatings were observed using scanning electron microscopy. Their chemical compositions and structures were characterized using energy-dispersive X-ray spectrum, X-ray photoelectron spectroscopy and X-ray diffraction. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization technique. The results show that the flowerlike Zn-Ca phosphate conversion coatings are mainly composed of hopeite (Zn3(PO4)2·4H2O). They have a quite different morphology from the dry-riverbed-like Zn phosphate coatings that consist of MgO, MgF2, Zn or ZnO and hopeite. Both of the zinc and zinc-calcium phosphate coatings can remarkably reduce the corrosion current density of the substrates. The Zn-Ca coating exhibits better corrosion resistance than the Zn coating. Introduction of calcium into the phosphate baths leads to the full crystallinity of the Zn-Ca coating.  相似文献   

5.
A biomimetic method has been used to prepare silicon-substituted hydroxyapatite coatings on titanium substrates. The surface structures of the coatings were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared spectroscopy (FTIR). Si substituted hydroxyapatite (Si-HA) coatings with different Si contents were deposited successfully on the titanium substrate by immersing the pretreated titanium substrate into silicon containing supersaturated solutions (SSS) with different SiO32− concentrations. The pretreatment of the Ti substrate in a mixed alkaline (NaOH + Ca(OH2)) followed by a heat treatment produced a 3D porous surface structure with rutile and CaTiO3 as main phases, which contributed mainly to the fast precipitation and deposition of Si-HA. FTIR results showed that Si in the Si-HA coating existed in the form of SiO44− groups. The cross-section microstructure was observed by scanning electronic microscopy and the shear strength was tested. The coating was about 5-10 μm in thickness and no interval was observed at the interface between the coating and the substrate. Shear strength testing showed that Si-HA/Ti exhibited higher shear strength than HA/Ti due to the existence of the SiO44− group in the coating.  相似文献   

6.
钛基材上电化学沉积羟基磷灰石   总被引:1,自引:0,他引:1  
通过电沉积法在经过阳极氧化的钛基材表面沉积磷酸钙盐涂层,再经碱热处理使磷酸钙涂层转变为羟基磷灰石涂层。扫描电镜(SEM)观察了阳极氧化后生成的TiO2纳米管的微观结构,以及生成的羟基磷灰石的形貌。X射线衍射仪(XRD)分析了涂层的相组成,同时测定了涂层与基体的结合强度。试验结果表明:电沉积涂层CaHPO4·2H2O经碱处理后转变为羟基磷灰石;电沉积添加双氧水与钛基材经过阳极氧化后使得涂层与基体结合强度有所提高。模拟体液浸泡试验表明涂层具有良好的生物活性。  相似文献   

7.
The synthetic hydroxyapatite (HA, Ca10(PO4)6(OH)2) is a very useful biomaterial for numerous applications in medicine, such as e.g., fine powder for suspension plasma spraying. The powder was synthesized using aqueous solution of ammonium phosphate (H2(PO4)NH4) and calcium nitrate (Ca(NO3) · 4H2O) in the carefully controlled experiments. The synthesized fine powder was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The powder was formulated into water and alcohol based suspension and used to carry out the initial tests of plasma spraying onto titanium substrate. The phase analysis of sprayed coating was made with the XRD.  相似文献   

8.
Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.  相似文献   

9.
High-velocity oxyfuel thermal spray coatings for biomedical applications   总被引:1,自引:1,他引:1  
Plasma spraying is used to produce most commercially available bioceramic coatings for dental implants; however, these coatings still contain some inadequacies. Two types of coatings produced by the high- velocity oxyfuel (HVOF) combustion spray process using commercially available hydroxyapatite (HA) and fluorapatite (FA) powders sprayed onto titanium were characterized to determine whether this relatively new coating process can be applied to bioceramic coatings. Diffuse reflectance Fourier transform infrared (FTIR) spectroscopy, x- ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the composition, microstructure, and morphology of the coatings. The XRD and FTIR techniques revealed an apatitic structure for both HA and FA coatings. However, XRD patterns indicated some loss in crystallinity of the coatings due to the spraying process. Results from FTIR showed a loss in the intensity of the OH and F groups due to HVOF spraying; the phosphate groups, however, were still present. Analysis by SEM showed a coating morphology similar to that obtained with plasma spraying, with complete coverage of the titanium substrate. Interfacial SEM studies revealed an excellent coating-to-substrate apposition. These results indicate that with further optimization the HVOF thermal spray process may offer another method for producing bioceramic coatings.  相似文献   

10.
Hydroxyapatite (HA, Ca10(PO4)6(OH)2) is a bioactive material being frequently used as a coating onto implants. The typical coating technology is air plasma spraying with the use of coarse powder. The resulting coatings are relatively thick (about 200-400 µm) and porous. Much thinner coatings being 5-40 µm thick, can be obtained by emerging technology of suspension plasma spraying with the use of powder particles having the diameters ranging from a few submicrometers to a few micrometers. The paper describes the way of synthesizing and preparing such fine powder starting from an aqueous solution of ammonium phosphate (H2(PO4)NH4) and calcium nitrate (Ca(NO3)·4H2O) using statistical design of experiments (DOE). The design was made using composite matrix including a full factorial plan, star points and 3 experiments in the centre. The crystal phases purity and the mass of powder batch were the optimized responses of the powder synthesis and the concentration of calcium ions and volume of ammonium hydroxide were the experimental variables. The synthesized material was characterized by X-ray diffraction (XRD). The powder was calcined and crushed using a milling machine with zirconia balls and resulting morphology and size of fine particles was characterized using scanning electron microscope (SEM) and laser sizer correspondingly. The powder was then formulated into water and alcohol based suspension and the zeta potential was determined to understand its capacity of agglomeration. It was found out that the formulation of the suspension with the use of ethanol slightly favours dispersion of solid particles in the suspension. The initial tests of water based suspension plasma spraying onto titanium substrate were also carried out and the XRD phase analysis of obtained coatings was carried out the presence of HA and its phases of decomposition.  相似文献   

11.
Alumina coatings were deposited on Al alloy substrates using an electrolytic plasma technique, based on a dielectric barrier discharge created during anodic oxidation in an aqueous electrolyte. The substrate material (BS Al 6082) was biased anodically with an unbalanced AC high voltage. During processing, a plasma current density of 100 mA/cm2 was used, at which a coating deposition rate of 1.67 μm/min was achieved. Coating abrasive wear and corrosion properties were assessed by conducting dry and wet rubber wheel abrasive tests and potentiodynamic polarization experiments, respectively. X-Ray diffraction (XRD) and transmission electron microscopy (TEM) were used to investigate the coating microstructure, and the coating/substrate interface. The property test results show that the coatings possess excellent abrasive wear and corrosion resistance. XRD analyses indicate that the coatings consist of α- and γ-Al2O3. An amorphous+nanocrystalline inner layer (1.5-μm thick) and a nanocrystalline (50–60 nm) intermediate layer in the coating were observed by TEM. The higher resistance to wear and corrosion can in part be attributed to the presence of these interlayers.  相似文献   

12.
Microstructures of radio frequency (RF) and direct current (DC) plasma-sprayed Al2O3 coatings deposited onto steel substrates were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), electron microprobe analysis (EMPA), polarizing optical microscopy (OM), and transmission electron microscopy (TEM). Because RF and DC plasmas produce different particle heating and acceleration, the morphology, phase structure, and fracture modes of the coatings vary substantially. In the case of RF coatings, a clear lamellar microstructure with relatively thick lamellae was observed, which is due to the large particles and the low particle velocities, with α-Al2O3 as the predominant phase and with delamination type of fracture detected on the fracture surface. In contrast, the DC coatings consisted of predominantly metastable γ-Al2O3 as well as amorphous phases, with a mixed fracture mode of the coating observed. In spite of limited interfacial interdiffusion detected by EMPA, TEM showed an interfacial layer existing at the interface between the coating and the substrate for both cases. For RF coatings, the interfacial layer on the order of 1 μm was composed of three sublayers, each of which was different in composition and morphology. However, the interfacial layer for the DC coating consisted primarily of an amorphous phase, containing both coating and substrate materials with or without platelike microcrystals; although in some regions a thick amorphous Al2O3 layer was in direct contact with the substrate.  相似文献   

13.
先采用PVD法在医用钛金属表面沉积一层Al膜,得到Al-Ti基体材料;而后采用阳极氧化与水热合成复合制备技术在Al-Ti基体上成功构造了由纳米网状磷酸盐组成的钙磷生物陶瓷/Al2O3多孔复合生物涂层.利用扫描电镜(SEM)、透射电镜(TEM)、电子能谱(EDAX)、X射线衍射(XRD)表征了阳极氧化前后铝膜和钙磷生物陶瓷涂层的微观形貌、元素构成以及晶相成分.结果表明:在阳极氧化过程中,钙、磷元素嵌入阳极氧化铝(AAO)膜,并经水热处理反应原位生成钙磷陶瓷;钙磷陶瓷晶体从Al2O3孔洞长出并覆盖于多孔氧化膜的表面;最终获得的钙磷生物陶瓷/多孔Al2O3复合涂层具有纳米网状、多孔的结构特征.分析探讨了钙磷生物陶瓷/多孔Al2O3复合涂层的原位生长过程,浓度梯度与电位差分别是Ca、P元素进入AAO膜的主要推动力.  相似文献   

14.
Silicon-substituted hydroxyapatite (Ca10(PO4)6-x(SiO4)x(OH)2-x, Si-HA) composite coatings on a bioactive titanium substrate were prepared by electrophoretic deposition technique with the addition of triethanolamine (TEA) to enhance the ionization degree of Si-HA suspension. The surface structure was characterized by XRD, SEM, XRF, EDS and FTIR. The bond strength of the coating was investigated. The results show that the depositing thickness and the images of Si-HA coating can be changed with the variation of deposition time. The XRD spectra of Ti/Si-HA coatings show the characteristic diffraction peaks of HA, and the incorporation of silicon changes the lattice parameter of the crystal. The FTIR spectra shows that the most notable effect of silicon substitution is the decrease of intensities of -OH and PO43- groups with the silicon contents increasing. XRD and EDS element analyses present that the content of silicon in the coating increases with increasing silicon concentration in the suspension. The bioactive TiO2 coating formed may improve the bond strength of the coatings. The interaction of Ti/Si-HA coating with BSA is much greater than that of Ti/HA coating, suggesting that the incorporation of silicon in HA is significant to improve the bioactive performance of HA.  相似文献   

15.
Phase transformations, particle breakdown, and partial decomposition occur in hydroxyapatite (HA) powder feedstock during plasma spraying. The biological responses of the coatings consequently change from the bioactive nature of the starting material to a less biocompatible one. This paper investigates the influence of powder characteristics on the phase composition and microstructure of plasma sprayed HA coatings. The raw HA was prepared by chemically reacting calcium hydroxide with orthophosphoric acid. Subsequently, HA was either calcined and crushed, flame spheroidized, or spray dried. These three types of HA powders were plasma sprayed on steel substrates to form coatings. A previous study showed that the calcined HA powder suffered from particle breakdown in the plasma. The plasma sprayed HA powders contained other calcium phosphate phases (amorphous and crystalline) apart from hydroxyapatite. The flow properties and stability of spheroidized HA were better than calcined HA and spraydried HA. Standard metallographic preparation of the cross sections of the coatings revealed different microstructural features among the coatings. The HA coatings prepared from calcined HA were highly porous and lacking in intimate lamellar contact. The spheroidized HA powders produced the coating with the lowest porosity. Characterization of the powders and coatings was carried out using x-ray diffraction (XRD), scanning electron microscopy (SEM), and optical microscopy.  相似文献   

16.
A porous cerium-containing hydroxyapatite coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in an electrolytic solution containing calcium acetate, p-glycerol phosphate disodium salt pentahydrate (β-GP), and cerium nitrate. The thickness, phase, composition morphology, and biocompatibility of the oxide coating were characterized by X-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS), and cell culture. The thickness of the MAO film is about 15-25 ~tm, and the coating is porous and uneven, without any apparent interface to the titanium substrates. The results of XRD and EDS show that the porous coating is made up of hydroxyapatite (HA) film containing Ce. The favorable osteoblast cell affinity makes the Ce-HA film have a good biocompatibility. The Ce-HA film is expected to have significant medical applications as dental implants and artificial bone joints.  相似文献   

17.
水热时间对钛合金微弧氧化膜合成羟基磷灰石的影响   总被引:7,自引:6,他引:1  
目的研究水热时间对TC4钛合金微弧氧化膜合成羟基磷灰石(HA)的影响。方法对TC4钛合金微弧氧化膜进行不同时间的水热合成处理,分析其微观形貌、成分及相结构,观察其在模拟体液中浸泡5周后的形貌及结构变化。结果水热处理提高了微弧氧化膜的Ca/P摩尔比,使非晶态钙磷化合物转化为HA晶体,随着水热时间的延长,HA衍射峰数量增多且强度增加。在模拟体液中浸泡5周后,微弧氧化膜表面仅有微量磷酸钙形成,而如水热合成后再浸泡,氧化膜表面的HA几乎完全转化为磷酸钙。结论水热处理有助于钛合金微弧氧化膜表面合成HA晶体。在8 h内,水热时间越长,氧化膜表面的HA含量越高,模拟体液中浸泡后形成的磷酸钙也越多,与人体的相容性越好。  相似文献   

18.
《金属精饰学会汇刊》2013,91(3):134-140
Abstract

Anodic oxide coatings were synthesised on Ti–6Al–4V substrates using aqueous electrolytes containing dissolved calcium and phosphorus. Different coatings were produced by varying the time of synthesis. Inherent features of the coatings were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Uniform corrosion, electrochemical polarisation and ac impedance tests were performed in simulated body fluid (SBF). Small amounts of calcium and phosphorus are deposited from the electrolyte on to the coating and their levels increase with increasing duration of synthesis. Maximum values of porosity and thickness are obtained for oxides coated for 3 h. Coatings produced from shorter times showed very good resistance to the attack of SBF.  相似文献   

19.
A novel hydroxyapatite/rutile coating was prepared on a titanium substrate. Initially, an amorphous calcium phosphate coating layer was electrochemically deposited on a Ti substrate. The surface morphology, chemical composition and phase identification of the coatings were investigated by the X-ray diffraction and scanning electron microscopy associated with an energy dispersive spectrometer. Annealing at 700°C for 3 hrs. transforms the amorphous calcium phosphate layer into well-crystallized hydroxyapatite (HAP) and the Ti metal surface into rutile. The developed HAP/rutile composite surface layer became denser and better adhering with the substrate than the initially formed amorphous calcium phosphate. The adhesion bond strength and the hardness of the coating were extremely raised by thermal annealing.  相似文献   

20.
Hydroxyapatite (HA)–titania (TiO2) composite coatings prepared on Ti6Al4V alloy surface can combine the excellent mechanical property of the alloy substrate and the good biocompatibility of the coating material. In this paper, HA–TiO2 composite coatings were deposited on Ti6Al4V substrates using suspension plasma spray (SPS). X-ray diffraction, scanning electron microscopy, Fourier infrared absorption spectrometry and friction tests were used to analyze the microstructure and tribological properties of the obtained coatings. The results showed that the spray distance had an important influence on coating microstructure and tribological performance. The amount of decomposition phases decreased as the spray distance increased. The increase in spray distance from 80 to 110 mm improved the crystalline HA content and decreased the wear performance of the SPS coatings. In addition, the spray distance had a big effect on the coating morphology due to different substrate temperature resulting from different spray distance. Furthermore, a significant presence of OH? and CO3 2? was observed, which was favorable for the biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号