首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The spectral characteristics of thermostimulated luminescence, steady-state roentgenoluminescence and photostimulated luminescence (PSL) buildup and decay kinetics, and the effect of IR irradiation on the roentgenoluminescence yield and glow curves of CaI2:Eu2+, CaI2:Gd2+, CaI2:Tl+, CaI2:Pb2+, CaI2:Mn2+, and CaI2: Pb2+, Mn2+ crystals grown by the Bridgman-Stockbarger method have been studied in the temperature range 90–295 K. Coupled with earlier data, the present results on the influence of oxygen and hydrogen impurities on the spectral characteristics of CaI2 indicate that the activation of calcium iodide with Eu2+, Gd2+, Tl+, Pb2+, and Mn2+ leads to the formation of cation impurity-native defect complexes, which act as carrier traps and are responsible for the thermostimulated luminescence in the range 150–295 K. IR exposure after 90-K x-ray excitation gives rise to flash PSL and influences the thermostimulated luminescence light sum. The nature of the emission and trapping centers involved and the mechanisms of recombination luminescence excitation in the crystals are discussed.  相似文献   

2.
Bi2VxW1 − x O6 − y ceramics are synthesized, and their structure and electrical properties are studied. The results indicate that the Bi2WO6-Bi2VO5.5 system contains Bi2WO6- and Bi2VO5.5-based solid solutions in the ranges 0 < x ≤ 0.2 and 0.75 ≤ x < 1, respectively. Tungsten stabilizes the high-temperature, tetragonal phase γ-Bi2VO5.5, which persists down to room temperature at 0.75 ≤ x ≤ 0.84. In the range 350–550°C, the electrical conductivity of the bismuth-vanadate-based solid solutions exceeds that of Bi2VO5.5 by about one order of magnitude. The conductivity of the Bi2WO6-based solid solutions is also higher than that of the host phase.__________Translated from Neorganicheskie Materialy, Vol. 41, No. 7, 2005, pp. 866–870.Original Russian Text Copyright © 2005 by Voronkova, Yanovskii, Kharitonova, Rudnitskaya.  相似文献   

3.
We have synthesized materials based on a silver titanium phosphate with partial substitution of tri-, tetra-, or pentavalent cations for titanium: Agx Ti2−x M x (PO4)3 (M = Nb5+, Ga3+) and AgTi2−x Zr x (PO4)3. The materials have been characterized by X-ray diffraction and impedance spectroscopy and have been shown to have small thermal expansion coefficients. Their ionic conductivity has been determined. Silver ions in these materials are difficult to replace with protons.  相似文献   

4.
Al3+/Mg2+ doped Y2O3:Eu phosphor was synthesized by the glycine-nitrate solution combustion method. In contrast to Y2O3:Eu which showed an irregular shape of agglomerated particles (the mean particle size >10 μm), the morphology of Al3+/Mg2+ doped Y2O3:Eu crystals was quite regular. Al3+/Mg2+ substituting Y3+ in Y2O3:Eu resulted in an obvious decrease of the particle size. Meanwhile, higher the Al3+/Mg2+ concentration, smaller the particle size. In particular, the introduction of Al3+ ion into Y2O3 lattice induced a remarkable increase of PL and CL intensity. While, for Mg2+ doped Y2O3:Eu samples, their PL and CL intensities decreased. The reason that causes the variation of PL and CL properties for Al3+ and Mg2+ doped Y2O3:Eu crystals was concluded to be related to sites of Al3+ and Mg2+ ions inclined to take and the difference of ion charge.  相似文献   

5.
NaLa(WO4)2:Eu3+ phosphors with different Eu3+ concentrations have been synthesized by a hydrothermal method. The phase is confirmed by XRD analysis, which shows a pure-phase NaLa(WO4)2 XRD pattern for all of NaLa(WO4)2:Eu3+ phosphors. The SEM and TEM images indicate that all of NaLa(WO4)2:Eu3+ phosphors have a octahedral morphology. These suggest that the Eu3+ doping has no influence on the structure and growth of NaLa(WO4)4 particles. By monitoring the emission of Eu3+ at 615 nm, NaLa(WO4)2:Eu3+ phosphors show excitation bands originating from both host and Eu3+ ions. Under the excitation at 271 nm corresponding to WO4 2? groups, emission bands coming from the 1A1 → 3T1 transition with the WO4 2? groups and the 5D0 → 7Fj (j = 0, 1, 2, 3 and 4) transitions of Eu3+ are observed. The emission intensity relating to WO4 2? groups decreases with increasing Eu3+ concentration. But emission intensities of Eu3+ increase firstly and then decreases because of concentration quenching effect. Under the excitation at 395 nm corresponding to 7F0 → 5L6 transition of Eu3+, only characteristic Eu3+ emission bands can be observed. The results of this work suggest that tunable luminescence can be obtained for Eu3+ doped NaLa(WO4)2 phosphors by changing Eu3+ concentration and excitation wavelength.  相似文献   

6.
Infrared-to-ultraviolet upconversion luminescence agent Y2O3:Yb3+,Tm3+ was prepared by a combustion method using citrate as a fuel/reductant. The prepared sample was characterized by X-ray diffraction, SEM, and fluorescence spectrophotometer. Two unusual 1I6 → 3H6 (~297 nm) and 1D2 → 3H6 (~363 nm) emissions from Tm3+ ions were observed at room temperature under 980-nm laser excitation. The change of upconversion emission intensity depending on the Yb3+ concentrations was discussed. The results showed that modest Yb3+ doping could make the upconversion emission of Tm3+ intense, and high Yb3+ concentrations might lead to fluorescence quenching. Moreover, the influence of ultraviolet upconversion luminescence on the photodegradation of methyl orange aqueous solution under solar light irradiation in the presence of TiO2 catalyst doped with Y2O3:Yb3+,Tm3+ was also investigated. It was concluded from the experiment of this study that TiO2/Y2O3:Yb3+,Tm3+ composite had higher photocatalytic activity than pure TiO2 under solar light. This study would make TiO2 utilize sunlight more efficiently and accelerate the practical application of photocatalytic technology in water treatment region.  相似文献   

7.
The Mn2+, Yb3+, Er3+: ZnWO4 green phosphors are synthesized successfully through the high temperature solid state reaction method. The micro-structure and morphology have been investigated by means of XRD and EDS. The doped concentrations of Mn2+, Yb3+, Er3+ are measured by ICP. The absorption spectra and emission spectra with different doped concentrations of Mn2+ are presented to reveal the influence of Mn2+ on the green up-conversion performance. Excited with 970 nm LED, the up-conversion emission peak at 547 nm is obtained and the CIE spectra as well as the green light photo are also presented. The results indicate that the Mn2+ ions play the role of the luminescence adjustment in the up-conversion process, which can improve the up-conversion green emission intensity effectively. The luminescence adjustment mechanism of Mn2+ ions in Mn2+, Yb3+, Er3+: ZnWO4 green phosphors has been discussed. The crystal parameters of Dq, B and C are calculated to evaluate the energy level split effect.  相似文献   

8.
The luminescent properties of CdI2, CdI2:Pb2+, CdI2:Mn2+, and CdI2:Pb2+,Mn2+) crystals have been studied at temperatures from 85 to 295 K under optical and x-ray excitation. Analysis of new and earlier spectroscopic data suggests that the 560-nm luminescence of CdI2:Pb2+ and CdI2:(Pb2+,Mn2+) crystals under excitation on the long-wavelength component of the A absorption band of Pb2+ centers is due to Pb2+-bound anion excitons. The 640-to 660-nm emission of these crystals is attributable to α centers. The manganese luminescence in the codoped material originates from both intracenter Mn2+ excitations and a sensitized process due to energy transfer from the host and Pb2+-related centers. The mechanisms of recombination and energy transfer processes in cadmium iodide crystals codoped with Pb2+ and Mn2+ are discussed.  相似文献   

9.
We have studied the pulsed cathodoluminescence spectra and kinetics of CaF2:Yb2+,Yb3+ (3 mol % YbF3) single crystals and pressed samples under excitation with nanosecond electron pulses and determined the characteristic times and intensities of nanosecond and microsecond emission decay components at temperatures from 15 to 300 K. The results demonstrate that deformation pressing in vacuum at 1150°C followed by annealing in a CF4 atmosphere at 1180°C has an insignificant effect on the emissive properties of CaF2:Yb2+,Yb3+.  相似文献   

10.
The polycrystalline Eu2+ and RE3+ co-doped strontium aluminates SrAl2O4:Eu2+, RE3+ were prepared by solid state reactions. The UV-excited photoluminescence, persistent luminescence and thermo-luminescence of the SrAl2O4:Eu2+, RE3+ phosphors with different composition and doping ions were studied and compared. The results showed that the doped Eu2+ ion in SrAl2O4:Eu2+, Dy3+ phosphors works as not only the UV-excited luminescent center but also the persistent luminescent center. The doped Dy3+ ion can hardly yield any luminescence under UV-excitation, but can form a electron trap with appropriate depth and greatly enhance the persistent luminescence and thermo-luminescence of SrAl2O4:Eu2+. Different co-doping RE3+ ions showed different effects on persistent luminescence. Only the RE3+ ion (e.g. Dy3+, Nd3+), which has a suitable optical electro-negativity, can form the appropriate electron trap and greatly improve the persistent luminescence of SrAl2O4:Eu2+. Based on above observations, a persistent luminescence mechanism, electron transfer model, was proposed and illustrated.  相似文献   

11.
The effect of BiI3 doping on the optical absorption spectra and roentgeno-, photo-, and thermoluminescence of CaI2 scintillator crystals has been studied in the temperature range 90–295 K. The crystals were grown by the Bridgman-Stockbarger method. Doping of CaI2 with BiI3 from the melt gives rise to absorption bands centered at 466, 400, and 350 nm, which can be interpreted as the A, B, and C bands due to electronic transitions from the 1 S 0 state to the 3 P 1, 3 P 2, and 1 P 1 levels of a free Bi3+ ion. The absorption band at 270–290 nm is assignable to near-activator excitons. Changes in spectral composition and the reduction in luminescence intensity caused by Bi3+ doping of CaI2 are associated mainly with the reabsorption of the emission from centers characteristic of the host by activator centers. Under x-ray excitation, the spectrum of heavily doped crystals shows, in addition, a weak emission centered around 620 nm, which is probably due to an impurity phase. The light sum of CaI2:Bi3+ under x-ray excitation is small and is due to shallow traps. Upon Bi3+ substitution on the cation site of CaI2, the excess charge of the activator is probably compensated by unintentional O2? impurity and vacancy pairs near Bi3+ centers—one vacancy in a neighboring cation site and the other in a neighboring anion site.  相似文献   

12.
The nonuniformly broadened spectra of Nd3+ in ZrO2-Y2O3-Nd2O3 crystals are studied using selective excitation, different time delays, and measurements of the excited-state lifetime at 77 K. Three basic types of optical spectra are identified and are assigned to three basic configurations of the nearest neighbor environment of Nd3+: sevenfold coordination and eightfold coordination with and without an oxygen vacancy among its second neighbors.__________Translated from Neorganicheskie Materialy, Vol. 41, No. 8, 2005, pp. 955–959.Original Russian Text Copyright © 2005 by Voron’ko, Lomonova, Popov, Sobol’, Ushakov.  相似文献   

13.
The influence of activation of the Y2O3 matrix of the Y2O3:Eu3+ phosphor by Bi3+ ions on the luminescence of Eu3+ and Bi3+ ions in it and on conditions of the excitation energy transfer to luminescence centers is studied. It is shown that the presence of Bi3+ ions leads to the appearance of recombination luminescence with participation of bismuth ions at low concentrations (up to 6–8 at %) of the dominant activator europium and to an increase in the threshold of intrinsic concentration quenching of its luminescence.  相似文献   

14.
LiEu1−x (W2−y Mo y )O8:xBi3+ series red-emitting phosphors were synthesized by solid state reaction. The structure, morphology, and photoluminescent properties of phosphors were studied by X-ray powder diffraction, scanning electron microscopy, and photoluminescence spectrum, respectively. X-ray powder diffraction analysis showed that the as-obtained phosphors belong to the scheelite structure. The average particle size of the investigated phosphor was about 8 μm. The excitation spectrum exhibits a charge-transfer broad band along with some sharp peaks from the typical 4f–4f transitions of Eu3+. Under excitation of UV, near-UV, or blue light, these phosphors showed strong red emission at 615 nm due to 5D07F2 transition of Eu3+. The incorporation of Mo6+ into LiEuW2O8:Bi3+ could induce red-shift of the charge-transfer broad band and a remarkable increase of photoluminescence. The highest red-emission intensity was observed with LiEu0.80Mo2O8:0.20Bi3+. Compared with the commercial red-emitting phosphor, Y2O2S:Eu3+, the emission intensity of LiEu0.80Mo2O8:0.20Bi3+ phosphor is much stronger than that of Y2O2S:Eu3+ and its chromaticity coordinates are closer to the standard values than that of the commercial phosphor. The optical properties of LiEu0.80Mo2O8:0.20Bi3+ phosphor make it attractive for the application in white-light-emitting diodes (LEDs), in particular for near-UV InGaN-based white-LEDs.  相似文献   

15.
We have studied the crystallization behavior of Na2O-NaPO3-MVIO3(MVI = Mo, W) high-temperature solutions containing 15 mol % Bi2O3 in the pseudoquaternary systems Na2O-Bi2O3-P2O5-MVIO3 and have established the conditions for the formation of Na3Bi(PO4)2, high-temperature BiPO4, NaBi(MoO4)2, Bi2WO6, and NaMoO2PO4. The compounds identified have been characterized by powder x-ray diffraction and IR spectroscopy.  相似文献   

16.
The spectral parameters of Er3+ in Yb3+/Er3+:KY(WO4)2 crystal with space group C2/c have been investigated based on Judd-Ofelt theory. The spectral parameters were obtained: the intensity parameters are: 2 = 6.33 × 10–20 cm2, 4 = 1.35 × 10–20 cm2, 6 = 1.90 × 10–20 cm2. The radiative lifetime and the fluorescence branch ratios were calculated. The emission cross section e (at 1536 nm) is 2.0 × 10–21 cm2.  相似文献   

17.
Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites have been prepared by solid-state reactions at a temperature of 1073 K. X-ray diffraction data indicate that, in the Bi2–хLaхFe4O9 system, the limiting degree of La3+ substitution for Bi3+ ions in Bi2Fe4O9 does not exceed 0.05 and that the limiting degree of substitution in the Bi2Fe4–2xTixCoxO9 system lies in the range 0.05 < x < 0.1. The specific magnetization and specific magnetic susceptibility of the samples have been measured at temperatures from 5 to 300 K in a magnetic field of 0.86 T. The field dependences of magnetization obtained for the Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites at temperatures of 300 and 5 K demonstrate that partial isovalent substitution of La3+ for Bi3+ ions in Bi2Fe4O9 and heterovalent substitution of Ti4+ and Co2+ ions for two Fe3+ ions leads to partial breakdown of the antiferromagnetic state and nucleation of a ferromagnetic state.  相似文献   

18.
Processes are described for the synthesis and melt growth of rare-earth-doped K2LaCl5, K2BaCl4, and K2SrCl4, using rare-earth oxides as starting materials. The solubility of rare-earth activators in Bridgman-grown crystals are determined, and the spectroscopic properties of K2LaCl5〈Nd〉 crystals are investigated.__________Translated from Neorganicheskie Materialy, Vol. 41, No. 6, 2005, pp. 748–752.Original Russian Text Copyright © 2005 by Vinogradova, Galagan, Dmitruk, Moiseeva, Osiko, Sviridova, Brekhovskikh, Fedorov.  相似文献   

19.
Nanocrystalline Lu2O3-TiO2 (33.3–44 mol % Lu2O3) materials with a partially disordered pyrochlore structure, prepared via heat treatment in the range 1400–1750°C, are found to possess high oxygen ionic conductivity. Their 740°C conductivity is 10-3 to 10-2 S/cm, depending on the heat-treatment temperature and composition, which is comparable to that of the well-known fluorite solid electrolyte ZrO2-9 mol % Y2O3.Translated from Neorganicheskie Materialy, Vol. 41, No. 3, 2005, pp. 324–331.Original Russian Text Copyright © 2005 by Shlyakhtina, Mosunov, Stefanovich, Knotko, Karyagina, Shcherbakova.This revised version was published online in April 2005 with a corrected cover date.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

20.
The novel Ca4?x(PO4)2O: xDy3+ and Ca4?x?y(PO4)2O: xDy3+, yEu2+ multi-color phosphors were synthesized by traditional solid-state reaction. The crystal structure, particle morphology, photoluminescence properties and energy transfer process were investigated in detail. The X-ray diffraction (XRD) results demonstrate that the products showed pure monoclinic phase of Ca4(PO4)2O when x < 0.1. The scanning electron microscopy (SEM) indicated that the phosphors were grain-like morphologies with diameters of ~ 3.7–7.0 μm. Under excitation of 345 nm, Dy3+-doped Ca4(PO4)2O phosphors showed multi-color emission bands at 410, 481 and 580 nm originated from oxygen vacancies and Dy3+. Interestingly, Ca4(PO4)2O: Dy3+, Eu2+ phosphors exhibited blue emission band at 481 nm and broad emission band from 530 to 670 nm covering green to red regions. The energy transfer process from Dy3+ to Eu2+ was observed for the co-doped samples, and the energy transfer efficiency reached to 60% when Eu2+ molar concentration was 8%. In particular, warm/cool/day white light with adjustable CCT (2800–6700 K) and high CRI (Ra > 85) can be obtained by changing the Eu2+ co-doping contents in Ca4(PO4)2O: Dy3+, Eu2+ phosphors. The optimized Ca3.952(PO4)2O: 0.04Dy3+, 0.008Eu2+ phosphor can achieve the typical white light with CCT of 4735 K and CRI of 87.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号