首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为解决柔性关节机器人在关节驱动力矩输出受限情况下的轨迹跟踪控制问题,提出一种基于奇异摄动理论的有界控制器.首先,利用奇异摄动理论将柔性关节机器人动力学模型解耦成快、慢两个子系统.然后,引入一类平滑饱和函数和径向基函数神经网络非线性逼近手段,依据反步策略设计了针对慢子系统的有界控制器.在快子系统的有界控制器设计中,通过关节弹性力矩跟踪误差的滤波处理加速系统的收敛.同时,在快、慢子系统控制器中均采用模糊逻辑实现控制参数的在线动态自调整.此外,结合李雅普诺夫稳定理论给出了严格的系统稳定性证明.最后,通过仿真对比实验验证了所提出控制方法的有效性和优越性.  相似文献   

2.
This paper considers the motion control and compliance control problemsfor uncertain rigid-link, flexible-joint manipulators, and presents newadaptive task-space controllers as solutions to these problems. The motioncontrol strategy is simple and computationally efficient, requires littleinformation concerning either the manipulator or actuator/transmissionmodels, and ensures uniform boundedness of all signals and arbitrarilyaccurate task-space trajectory tracking. The proposed compliant motioncontrollers include an adaptive impedance control scheme, which isappropriate for tasks in which the dynamic character of theend-effector/environment interaction must be controlled, and an adaptiveposition/force controller, which is useful for those applications thatrequire independent control of end-effector position and contact force. Thecompliance control strategies retain the simplicity and model independenceof the trajectory tracking scheme upon which they are based, and are shownto ensure uniform boundedness of all signals and arbitrarily accuraterealization of the given compliance control objectives. The capabilities ofthe proposed control strategies are illustrated through computer simulationswith a robot manipulator possessing very flexible joints.  相似文献   

3.
《Advanced Robotics》2013,27(7-8):755-769
As each joint actuator of a robot manipulator has a limit value of torque, the motion control system should consider the torque saturation. Conventional motion control based on robust acceleration controller cannot consider the torque saturation and it often causes an oscillated or wrong response. This paper proposes a new autonomous consideration method of joint torque saturation for robust manipulator motion control. The proposed method consists of three on-line autonomous algorithms. These algorithms are the torque limitation algorithm in joint space, the adjustment algorithm of motion control in Cartesian space, and the adjustment algorithm of motion reference in Cartesian space. The robot motion control using the proposed algorithms realizes smooth and robust robot motion response.  相似文献   

4.
《Advanced Robotics》2013,27(4):345-359
As each joint actuator of a robot manipulator has a limit value of torque, the motion control system should consider the torque saturation. In order to consider the torque saturation in a transient state, this paper proposes a new redundant motion control system using the autonomous consideration algorithm on torque saturation. A Jacobian matrix of a redundant robot manipulator can select the optimal one considering its motion energy in the steady state. When the motion control system carries out fast motion and quick disturbance suppression, a high joint torque is required in a transient state. In the experimental results, under the condition of having a large payload torque and a fast motion reference, the proposed redundant manipulator control realizes the quick robot motion robustly and smoothly.  相似文献   

5.
This paper proposes a saturated nonlinear PID regulator for industrial robot manipulators. Our controller considers the natural saturation problem given by the output of the control computer, the saturation phenomena of the internal PI velocity controller in the servo driver, and the actuator torque constraints of the robot manipulator. An approach based on the singular perturbations method is used to analyze the exponential stability of the closed-loop system. Experimental essays show the feasibility of the proposed controller. Furthermore, the theoretical results justify why the classical PID used in industrial robots preserves its exponential stability despite the saturation effects of the electronic control devices and the actuator torque constraints.  相似文献   

6.
A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system.  相似文献   

7.
Common assumptions in most of the previous robot controllers are that the robot kinematics and manipulator Jacobian are perfectly known and that the robot actuators are able to generate the necessary level of torque inputs. In this note, an amplitude-limited torque input controller is developed for revolute robot manipulators with uncertainty in the kinematic and dynamic models. The adaptive controller yields semiglobal asymptotic regulation of the task-space setpoint error. The advantages of the proposed controller include the ability to actively compensate for unknown parametric effects in the dynamic and kinematic model and the ability to ensure actuator constraints are not breached by calculating the maximum required torque a priori  相似文献   

8.
针对面贴式永磁同步电机驱动的柔性关节机械臂动力学模型具有非线性、不确定性和未知外部扰动等特点,提出一种自适应动态面控制方法来实现其关节轨迹跟踪控制.控制律由动态面技术得到,降低了反推控制器的复杂性.模型不确定因素由递归Elman神经网络在线补偿,神经网络权值自适应律通过Lyapunov稳定性分析推导得到.仿真研究表明,该方法对于载荷不确定和外界扰动具有较强的鲁棒性,与传统动态面法相比,大大提高了柔性关节的位置跟踪精度.  相似文献   

9.
In this paper a new approach employing smooth robust compensators is proposed for the control of uncertain elastic-joint robot manipulators during contact tasks. It is assumed that the flexible-joint manipulators consist of two subsystems: the rigid subsystem and the flexible subsystem. The output of the flexible subsystem is assumed to be the input of the rigid subsystem. The control design is carried out in two steps. First, a desired input is designed for the rigid subsystem, which can robustly stabilize it. Second, a robust controller is designed to stabilize the flexible subsystem so that it generates the necessary torque designed for the rigid subsystem. By using this approach, the robot manipulator can exert a preset amount of force on the environment while tracking a desired trajectory with global asymptotic stability. Lyapunov's direct method is used here to prove the global asymptotic stability of the closed-loop system. The assumption of weak joint elasticity is relaxed and exact knowledge of joint stiffness is not required for the control design. Also, exact knowledge of robot kinematic and dynamic parameters and actuator parameters are not required. Unlike other approaches, this approach takes the environmental stick-slip friction as well as its dependency on normal contact force into consideration. It compensates for the adverse effects of the stick-slip friction. The proposed controller produces a smooth control action, and ensures smooth motion on the contact surface. The efficacy of the proposed controller is illustrated with the help of a numerical example of a two-link flexible-joint robot. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
《Advanced Robotics》2013,27(6):655-679
For the first time, a novel experimental hydraulic system that simulates joint flexibility of a single-rigid-link flexible-joint robot manipulator, with the ability of changing the joint flexibility's parameters, was designed and implemented in this study. Such a system could facilitate future control studies of robot manipulators by reducing investigation time and implementation cost of research. It could also be used to test the performance of different strategies to control the movement of flexible-joint manipulators. A hydraulic rotary servo motor was used to simulate the action of a flexible-joint robot manipulator, which was a challenging task, since the control of angular acceleration was required. In this study, a single-rigid-link elastic-joint robot manipulator was mathematically modeled and implemented in which joint flexibility parameters such as stiffness and damping could be easily changed. This simulation is referred to as a 'function generator' to drive a hydraulic robot manipulator. In this study the desired angular acceleration of the manipulator was used as the input to the hydraulic rotary motor and the objective was to make the hydraulic system follow the desired acceleration in the frequency range specified. A hydraulic actuator robot was built and tested. The results indicated that if the input signal had a frequency in the range of 5–15 Hz and damping ratio of 0.1 (typical values for flexible joints), the experimental setup was able to reproduce the input signal with acceptable accuracy. Owing to the inherent noise associated with the measurement of acceleration and some severe nonlinearities in the rotary motor, control of the experimental test system using classical methods was a challenging task that had not been anticipated.  相似文献   

11.
当机械臂的质量很轻,尤其是空间应用场合,机器人系统将受到高度柔性限制并且不可避免地产生机械振动.本文为了证实提出的控制不期望残余振动的方法,设计并建立了柔性机器人实验平台.控制方案采用交流伺服电机通过谐波齿轮减速器驱动柔性机械臂,利用粘贴在柔性臂上的压电陶瓷片(PZT)作为传感器来检测柔性臂的振动.对由于环境激励,尤其是在电机转动(机动)时由于电机力矩产生的振动,采用了几种主动振动控制器包括模态PD控制,软变结构控制(VSC)和增益选择变结构方法,进行柔性臂的振动主动控制实验研究.通过实验比较研究,结果表明采用的控制方法可以快速抑制柔性结构的振动,采用的控制方法是有效的.  相似文献   

12.
In this paper, we discuss the mixed H2/H distributed robust model predictive control problem for polytopic uncertain systems subject to randomly occurring actuator saturation and packet loss. The global system is decomposed into several subsystems, and all the subsystems are connected by a fixed topology network, which is the definition for the packet loss among the subsystems. To better use the successfully transmitted information via Internet, both the phenomena of actuator saturation and packet loss resulting from the limitation of the communication bandwidth are taken into consideration. A novel distributed controller model is established to account for the actuator saturation and packet loss in a unified representation by using two sets of Bernoulli distributed white sequences with known conditional probabilities. With the nonlinear feedback control law represented by the convex hull of a group of linear feedback laws, the distributed controllers for subsystems are obtained by solving an linear matrix inequality (LMI) optimisation problem. Finally, numerical studies demonstrate the effectiveness of the proposed techniques.  相似文献   

13.
To achieve predefined-time trajectory tracking control of a flexible-joint space robot(FJSR) with actuator constraints, a nonsingular predefined-time dynamic surface control scheme is developed. The input saturation caused by actuator constraints is addressed via the designed predefined-time anti-saturation compensator. On this basis, two different control laws are designed for such high-order nonlinear systems by utilizing the backstepping technique, and a novel nonlinear filter is constructed to filter the virtual control signals, thus avoiding the “differential expansion” phenomenon. Moreover, a singularity-free auxiliary function is designed to solve the singularity issue generated by the derivative of fractional power terms in the predefined-time control algorithm framework. The closed-loop system is proven to be semi-globally predefined-timely uniformly ultimately bounded (SGPTUUB) via constructing the suitable Lyapunov function. The difference and effectiveness of the two designed control laws are illustrated by the conducted simulations. Both of them allow the FJSR system to track the desired trajectory in a reasonably predefined time.  相似文献   

14.
Space manipulators are flexible structures. Vibration problem will be unavoidable due to motion or external disturbance excitation. Model based control methods will not maintain the required accuracy because of the existence of nonlinear factors and parameter uncertainties. To solve these problems, fuzzy logic control laws with different membership function groups are adopted to suppress vibrations of a flexible smart manipulator using collocated piezoelectric sensor/actuator pair. Also, dual-mode controllers combining fuzzy logic and proportional integral control are designed, for suppressing the lower amplitude vibration near the equilibrium point significantly. Experimental comparison research is conducted, using fuzzy control algorithms and the dual-mode controllers with different membership functions. The experimental results show that the adopted fuzzy control algorithms can substantially suppress the larger amplitude vibration; and the dual-mode controllers can also damp out the lower amplitude vibration significantly. The experimental results demonstrate that the proposed fuzzy controllers and dual-mode controllers can suppress vibration effectively, and the optimal placement is feasible.  相似文献   

15.
In this paper we develop output feedback controllers and fixed-order (i.e., full- and reduced-order) dynamic compensators for systems with actuator amplitude and rate saturation constraints. The proposed design methodology employs a rate limiter as part of the controller architecture. The problem of simultaneous control amplitude and rate saturation is embedded within an optimization problem by constructing a Riccati equation whose solution guarantees closed-loop global/local asymptotic stability in the face of sector bounded actuator amplitude and rate non-linearities. Application of the proposed framework is demonstrated via a flight control example involving actuator amplitude and rate saturation constraints.  相似文献   

16.
This paper addresses the set-point control of robot manipulators with friction where avoiding saturation of the actuators is a major issue. The original contribution is a novel direct fuzzy control system dealing with both practical constraints in mechanical manipulators: saturation and friction. The control system is made by taking advantage of input-output properties of the so-called sectorial fuzzy controllers. When friction is considered, we prove, via Lyapunov theory, that the steady state position errors owing to static friction are inside of a global attractor, which can be arbitrarily reduced. In case of absence of friction, the closed-loop system becomes globally asymptotic stable. In both cases, the important theoretical and practical feature of maintaining the control actions always within prescribed limits according to the actuator torque capabilities is guaranteed. Experimental evaluation of the proposed direct fuzzy control system on a nonlinear direct-drive robot arm is presented to validate its effectiveness.  相似文献   

17.
In this paper, an adaptive fuzzy state feedback control method is proposed for the single-link robotic manipulator system. The considered system contains unknown nonlinear function and actuator saturation. Fuzzy logic systems (FLSs) and a smooth function are used to approximate the unknown nonlinearities and the actuator saturation, respectively. By combining the command-filter technique with the backstepping design algorithm, a novel adaptive fuzzy tracking backstepping control method is developed. It is proved that the adaptive fuzzy control scheme can guarantee that all the variables in the closed-loop system are bounded, and the system output can track the given reference signal as close as possible. Simulation results are provided to illustrate the effectiveness of the proposed approach.   相似文献   

18.
Some practical issues associated with enhancing the Cartesian impedance performance of flexible joint manipulator are investigated. A digital signal processing/field programmable gate array (DSP/FPGA) structure is proposed to realize the singular perturbation based impedance controller. To increase the bandwidth of torque control and minimize the joint torque ripple, boundary layer system and field-oriented control (FOC) are fully implemented in a FPGA of each joint. The kernel of the hardware system is a peripheral component interface (PCI)-based high speed floating-point DSP for the Cartesian level control, and FPGA for high speed (200 us cycle time) multipoint low-voltage differential signaling (M-LVDS) serial data bus communication between robot Cartesian level and joint level. Experimental results with a four-degree-of-freedom flexible-joint manipulator under constrained-motion task, demonstrate that the controller architecture can enhance the robot impedance performance effectively.  相似文献   

19.
This article presents a novel hybrid actuator scheme to actively and robustly control the endpoint position of a very flexible single-link manipulator. The control scheme consists of two actuators; a motor mounted at the beam hub and a piezoceramic bonded to the surface of the flexible link. The control torque of the motor, which produces a desired angular motion, is determined by employing the sliding mode control theory on the equation of motion of the rigid link having the same mass as that of the proposed flexible link. The torque is then applied to the flexible manipulator to activate the commanded motion. During the motion, the undesirable oscillation caused by the torque, based on the rigid link dynamics, is actively suppressed by applying a feedback control voltage to the piezoceramic actuator. Consequently, desired tip motion is achieved. Both regulating and tracking control responses are analyzed through experimental implementation to demonstrate high performance characteristics to be accrued from the proposed methodology. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
《Advanced Robotics》2013,27(4):309-324
In this paper, we present a time-optimal control scheme for a robot manipulator to track a predefined geometric path, subject to constraints due to the limit heat characteristics of the actuator (the DC motor was assumed to be the actuator used). Constraints due to the rated torque bounds and the rated velocity bounds of the motor would not be valid for continuous use of the manipulator, since the required mechanical output of the actuator (DC motor) exceeds its maximum power capacity and greatly exceeds its heat-converted power limit. The heat-converted power of the DC motor is thus considered as the actuation bound and the time-optimal trajectories are generated subject to this bound. Computer simulation was also executed to demonstrate the effectiveness of the proposed scheme in comparison to former schemes that used the rated torque and the rated velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号