首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article, a robust control scheme for trajectory tracking of very lightweight single-link flexible arms is discussed. Since the payload is one of the most variable parameters in a manipulator, the control is designed to achieve an accurate tracking of the desired tip trajectory for any value of the robot tip mass, or even for a tip mass changing during the maneuver. The proposed controller also guarantees stability for small uncertainties in parameters such as stiffness or motor friction. In addition, the effect of spillover on the performance of the controlled system is analyzed, and it is proven that stability and a good performance are preserved independently from the non-modeled high-order dynamics. The control scheme is based on a two nested loops structure. Each of these loops implements a Generalized Proportional Integral (GPI) controller. Moreover, the outer loop includes a disturbance compensation term based on a disturbance observer, which achieves the required insensitivity to payload changes. The theoretical analysis is supported by an extensive set of numerical simulations which shows controlled system response when variations in the robot payload, or dynamics neglected in the controller design, are considered. Finally, some experiments have been carried out in order to test the performance of the tip trajectory tracking of the proposed control system.  相似文献   

2.
This paper proposes an adaptive robust fuzzy control scheme for path tracking of a wheeled mobile robot with uncertainties. The robot dynamics including the actuator dynamics is considered in this work. The presented controller is composed of a fuzzy basis function network (FBFN) to approximate an unknown nonlinear function of the robot complete dynamics, an adaptive robust input to overcome the uncertainties, and a stabilizing control input. The stability and the convergence of the tracking errors are guaranteed using the Lyapunov stability theory. When the controller is designed, the different parameters for two actuator models in the dynamic equation are taken into account. The proposed control scheme does not require the accurate parameter values for the actuator parameters as well as the robot parameters. The validity and robustness of the proposed control scheme are demonstrated through computer simulations. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   

3.
In this paper, an adaptive nonlinear control scheme with a friction observer for position control of an electrohydraulic actuator is proposed. The observer based on the LuGre friction model is employed to compensate for the friction. Adaptation laws are used to handle parameter uncertainties in the actuator and friction model. The control law including dynamics of the observer is developed through a backstepping‐like dynamic surface control (DSC) technique. Experimental results have illustrated the success of the control scheme. The results also show that the adaptive DSC controller has better tracking performance than an adaptive backstepping and conventional PI controllers.  相似文献   

4.
Adaptive control of robot manipulator using fuzzy compensator   总被引:4,自引:0,他引:4  
This paper presents two kinds of adaptive control schemes for robot manipulator which has the parametric uncertainties. In order to compensate these uncertainties, we use the FLS (fuzzy logic system) that has the capability to approximate any nonlinear function over the compact input space. In the proposed control schemes, we need not derive the linear formulation of robot dynamic equation and tune the parameters. We also suggest the robust adaptive control laws in all proposed schemes for decreasing the effect of approximation error. To reduce the number of fuzzy rules of the FLS, we consider the properties of robot dynamics and the decomposition of the uncertainty function. The proposed controllers are robust not only to the structured uncertainty such as payload parameter, but also to the unstructured one such as friction model and disturbance. The validity of the control scheme is shown by computer simulations of a two-link planar robot manipulator  相似文献   

5.
In this paper, we propose a new robust output feedback control approach for flexible-joint electrically driven (FJED) robots via the observer dynamic surface design technique. The proposed method only requires position measurements of the FJED robots. To estimate the link and actuator velocity information of the FJED robots with model uncertainties, we develop an adaptive observer using self-recurrent wavelet neural networks (SRWNNs). The SRWNNs are used to approximate model uncertainties in both robot (link) dynamics and actuator dynamics, and all their weights are trained online. Based on the designed observer, the link position tracking controller using the estimated states is induced from the dynamic surface design procedure. Therefore, the proposed controller can be designed more simply than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop adaptive system are uniformly ultimately bounded. Finally, the simulation results on a three-link FJED robot are presented to validate the good position tracking performance and robustness of the proposed control system against payload uncertainties and external disturbances.  相似文献   

6.
一种高效能的机器人模糊控制方案   总被引:2,自引:0,他引:2  
本文提出一种高效能的模糊控制方案,来提高机器人当存在摩擦力和负载等不确定因素时以及动力学参数变化时的系统响应特性.该控制方案是由一个模糊逻辑(FL)控制器(主控制器)和一个传统的微分(D)控制器(辅助控制器)所构成.FL控制器用来提高系统的瞬态特性和稳态精度,D控制器用来保证系统的稳定性.在这一控制方案基础上,获得理想控制特性的主要思想是研究和调整语言变量的隶属度函数.模拟结果表明了这一控制方案的有效性和鲁棒性.此外,这一控制方案具有结构简单且易于实现的优点.  相似文献   

7.
This article describes a new control scheme designed for a three degree of freedom (3‐DOF) flexible robot. The control scheme consists of two multi variable control loops. The inner loop is the motor's position control system, while the outer loop controls the robot tip's position, thus canceling vibrations which are originated by the structural flexibility of the manipulator during movement. As it will be shown, the outer control loop is robust to payload variations. The outer loop performance is based on a perfect cancelation of the inner loop dynamics. The effects of not achieving such perfect cancelation are also studied, and rules for designing a robust controller in this case are developed. Simulations assuming different payloads have been carried out with successful results for trajectory tracking. Trajectory tracking with a variable payload is also achieved.  相似文献   

8.
Decentralized adaptive fuzzy control of robot manipulators   总被引:2,自引:0,他引:2  
This paper develops a decentralized adaptive fuzzy control scheme for robot manipulators via a combination of genetic algorithm and gradient method. The controller for each link consists of a feedforward fuzzy torque-computing system and a feedback fuzzy PD system. The feedforward fuzzy system is trained and optimized off-line by an improved genetic algorithm, that is to say, not only the parameters but also the structure of the fuzzy system are self-organized. Because genetic algorithm can operate successfully without the system model, no exact inverse dynamics of the robot system are required. The feedback fuzzy PD system, on the other hand, is tuned on-line using gradient method. In this way, the proportional and derivative gains are adjusted properly to keep the closed-loop system stable. The proposed controller has the following merits: (1) it needs no exact dynamics of the robot systems and the computation is time-saving because of the simple structure of the fuzzy systems; and (2) the controller is insensitive to various dynamics and payload uncertainties in robot systems. These are demonstrated by analyses of the computational complexity and various computer simulations.  相似文献   

9.
本文研究具有不确定性的机器人的轨迹跟踪控制问题。提出了一种由计算力矩控制器和神经网络补偿控制器构成的控制方案。探讨了一种用神经网络估计机器人系统不确定性的途径。给出了神经补偿控制器的设计方法,并证明了闭环系统的收敛性。仿真结构表明所提方案具有很好的鲁棒性和抗干扰能力。  相似文献   

10.
本文提出一种新型的分散式自适应鲁棒机器人控制方案。它主要解决以下诸方面的问题:1)减少在线计算量;2)通过设置一个非线性观测器来及时修正模型信息,以适应负载及其他因素变化的需要,进而有效地减少所需控制值(尤其当系统处于平稳工作状态时,效果更加明显),相应地,也就减少了系统工作时的动能损耗。这一点对[1]中提出的机器人分散式变结构控制算法有较大改进;3)对系统的不确定性和扰动作用具有鲁棒性。  相似文献   

11.
A new adaptive-control scheme for direct control of manipulator end effector to achieve trajectory tracking in Cartesian space is developed in this article. The control structure is obtained from linear multivariable theory and is composed of simple feedforward and feedback controllers and an auxiliary input. The direct adaptation laws are derived from model reference adaptive control theory and are not based on parameter estimation of the robot model. The utilization of adaptive feedforward control and the inclusion of auxiliary input are novel features of the present scheme and result in improved dynamic performance over existing adaptive control schemes. The adaptive controller does not require the complex mathematical model of the robot dynamics or any knowledge of the robot parameters or the payload, and is computationally fast for on-line implementation with high sampling rates. The control scheme is applied to a two-link manipulator for illustration.  相似文献   

12.
This article presents an original motion control strategy for robot manipulators based on the coupling of the inverse dynamics method with the so-called second-order sliding mode control approach. Using this method, in principle, all the coupling non-linearities in the dynamical model of the manipulator are compensated, transforming the multi-input non-linear system into a linear and decoupled one. Actually, since the inverse dynamics relies on an identified model, some residual uncertain terms remain and perturb the linear and decoupled system. This motivates the use of a robust control design approach to complete the control scheme. In this article the sliding mode control methodology is adopted. Sliding mode control has many appreciable features, such as design simplicity and robustness versus a wide class of uncertainties and disturbances. Yet conventional sliding mode control seems inappropriate to be applied in robotics since it can generate the so-called chattering effect, which can be destructive for the controlled robot. In this article, this problem is suitably circumvented by designing a second-order sliding mode controller capable of generating a continuous control law making the proposed sliding mode controller actually applicable to industrial robots. To build the inverse dynamics part of the proposed controller, a suitable dynamical model of the system has been formulated, and its parameters have been accurately identified relying on a practical MIMO identification procedure recently devised. The proposed inverse dynamics-based second-order sliding mode controller has been experimentally tested on a COMAU SMART3-S2 industrial manipulator, demonstrating the tracking properties and the good performances of the controlled system.  相似文献   

13.
《Applied Soft Computing》2008,8(1):778-787
This paper presents a fuzzy adaptive control suitable for motion control of multi-link robot manipulators with structured and unstructured uncertainties. When joint velocities are available, full state fuzzy adaptive feedback control is designed to ensure the stability of the closed loop dynamic. If the joint velocities are not measurable, an observer is introduced and an adaptive output feedback control is designed based on the estimated velocities. In the proposed control scheme, we need not derive the linear formulation of robot dynamic equation and tune the parameters. To reduce the number of fuzzy rules of the fuzzy controller, we consider the properties of robot dynamics and the decomposition of the uncertainties terms. The proposed controller is robust against uncertainties and external disturbance. Further, it is shown that required stability conditions, in both cases, can be formulated as LMI problems and solved using dedicated software. The validity of the control scheme is demonstrated by computer simulations on a two-link robot manipulator.  相似文献   

14.
The paper discusses a tracking control system and shows with simulation and experimental results that extended friction models can be successfully incorporated in a computed-torque-like adaptive control scheme. The friction model used includes Coulomb, viscous, and periodic friction with sense of direction dependent parameters. To get small tracking errors, adaptation of the friction model parameters is necessary. The tracking performance is an order of magnitude better than with PD control. The robustness of the scheme for parameter inaccuracies is sufficient, owing to the adaptation, but the controller gains are limited due to stability problems caused by unmodeled dynamics.  相似文献   

15.
In this paper, a Takagi-Sugeno-Kang-type fuzzy-neural-network control (T-FNNC) scheme is constructed for an n-link robot manipulator to achieve high-precision position tracking. According to the concepts of mechanical geometry and motion dynamics, the dynamic model of an n-link robot manipulator including actuator dynamics is introduced initially. However, it is difficult to design a suitable model-based control scheme due to the uncertainties in practical applications, such as friction forces, external disturbances and parameter variations. In order to cope with this problem, a T-FNNC system without the requirement of prior system information and auxiliary control design is investigated to the joint position control of an n-link robot manipulator for periodic motion. In this model-free control scheme, a five-layer fuzzy-neural-network is utilized for the major control role, and the adaptive tuning laws of network parameters are established in the sense of projection algorithm and Lyapunov stability theorem to ensure the network convergence as well as stable control performance. In addition, experimental results of a two-link robot manipulator actuated by dc servomotors are provided to verify the effectiveness and robustness of the proposed T-FNNC methodology.  相似文献   

16.
The article puts forward a simple scheme for multivariable control of robot manipulators to achieve trajectory tracking. The scheme is composed of an inner loop stabilizing controller and an outer loop tracking controller. The inner loop utilizes a multivariable PD controller to stabilize the robot by placing the poles of the linearized robot model at some desired locations. The outer loop employs a multivariable PID controller to achieve input-output decoupling and trajectory tracking. The gains of the PD and PID controllers are related directly to the linearized robot model by simple closed-form expressions. The controller gains are updated on-line to cope with variations in the robot model during gross motion and for payload change. Alternatively, the use of high gain controllers for gross motion and payload change is discussed. Computer simulation results are given for illustration.  相似文献   

17.
18.
We propose a new robust trajectory tracking control scheme for wheeled mobile robots without longitudinal velocity measurements. In the proposed controller, a velocity observer is used to estimate the longitudinal velocity of a wheeled mobile robot. A wheeled mobile robot model, including motor dynamics, is used to develop the controller. The developed controller has the following useful properties. (1) The developed controller does not require any accurate knowledge of the robot parameters or the motor parameters. Even if there are uncertainties in the robot dynamics, including the motor properties, it is certain that tracking errors ultimately become uniformly bounded in a closed-loop system using the developed controller. (2) It is shown theoretically that the ultimate norms of tracking errors can easily be reduced by setting only one design parameter.  相似文献   

19.
In this paper, an admittance control scheme for a user-in-charge exoskeleton is presented. The controller basically consists of a composite adaptive controller implementing a feedback law to estimate the structured uncertainties and to modify the apparent dynamics of the robot, and an LWPR estimator which tries to give an appropriate approximation of unmodeled uncertainty along with a robust term aiming to overcome the approximation residue. The control scheme offers a unified general control structure that explains the effect of each control component on the others. It is proved that based on the developed controller, the tracking and estimation errors converge to small boundaries with ultimate boundedness property due to the presence of the unstructured uncertainty. Based on simulations of a 2-DOF leg, the effectiveness of the controller is investigated. The results show the effectiveness of employing a universal approximator alongside a robust adaptive control and the success of the recommended approach in estimating model parameters and unmodeled dynamics simultaneously.  相似文献   

20.
In this paper, a new adaptive neuro controller for trajectory tracking is developed for robot manipulators without velocity measurements, taking into account the actuator constraints. The controller is based on structural knowledge of the dynamics of the robot and measurements of joint positions only. The system uncertainty, which may include payload variation, unknown nonlinearities and torque disturbances is estimated by a Chebyshev neural network (CNN). The adaptive controller represents an amalgamation of a filtering technique to generate pseudo filtered tracking error signals (for the elimination of velocity measurements) and the theory of function approximation using CNN. The proposed controller ensures the local asymptotic stability and the convergence of the position error to zero. The proposed controller is robust not only to structured uncertainty such as payload variation but also to unstructured one such as disturbances. Moreover the computational complexity of the proposed controller is reduced as compared to the multilayered neural network controller. The validity of the control scheme is shown by simulation results of a two-link robot manipulator. Simulation results are also provided to compare the proposed controller with a controller where velocity is estimated by finite difference methods using position measurements only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号