首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
李志刚  王慧明  树学峰 《材料导报》2013,27(8):138-141,162
研究了补强后具有幂率强化特征的广义neo-Hookean的高聚物电子封装材料,利用超弹性材料空穴分叉的理论推导出了此类封装材料在回流焊过程中空穴的生成及增长与热应力之间的解析关系。同时考虑了高聚物电子封装材料添加补强纤维后对空穴增长模型产生的影响。讨论了补强系数γ和补强后的硬化指数n对空穴增长的影响。分析结果表明:对于补强后的电子封装材料,如果储能函数中的硬化指数为偶数形式,则空穴失稳的极限载荷将伴随着补强系数的增大而增大;反之,如果为奇数形式,则极限载荷将伴随着补强系数的增大而降低,具有这种储能形式的高聚物材料更易发生"爆米花"式的失效。  相似文献   

2.
讨论了皮秒脉冲激光微细加工时半导体中电子-空穴等离子体的作用及动力学特性,指出高密度电子-空穴等离子体使半导体的介电和光特性发生了显著变化,通过测量材料表面反射比的实验表明,它与热熔化模型比较符合,等离子体将能量瞬时转换给晶格,加热晶格到熔点,从而进行微细加工。  相似文献   

3.
讨论了皮秒脉冲激光微细加工时半导体中电子-空穴等离子体的作用及动力学特性。指出高密度电子-空穴等离子体使半导体的介电和光特性发生了显著变化。通过测量材料表面反射比的实验表明,它与热熔化模型比较符合,等离子体将能量瞬时转换给晶格,加热晶格到熔点,从而进行微细加工。  相似文献   

4.
染料敏化纳米薄膜太阳能电池的研究进展   总被引:9,自引:0,他引:9  
本文简要地介绍了染料敏化纳米薄膜太阳能电池的结构和原理;对其中关键问题,如纳米TiO2膜、敏化染料、空穴传输材料的研究进展进行了综述。  相似文献   

5.
聚丙烯材料的动态断裂   总被引:1,自引:0,他引:1  
聚丙烯材料存在着由加载速率变化引起的韧脆转化现象,增加速率,该材料由韧性断裂向脆性断裂方式转化,提高试验温度,使这一转化向商加载速率方向移动,引入Arrhenius关系,通过热激活分析,可以获得定量化描述断裂能量,加载速率以及试验温度之间的关系。  相似文献   

6.
粉末冶金法制备PSZ/Mo复合材料的研究   总被引:2,自引:0,他引:2  
本文采用粉末冶金法制备了不同成分的PSZ/Mo复合材料。并对其密度、弹性模量和热膨胀系数进行了测量和分析,用XRD进行了物相分析。实验结果表明:纳米氧化锆的烧结性能比金属钼好;弹性模量估算选用简单混合法则进行计算时应进行修正;钼和氧化锆在烧结时不发生化学反应。通过热压PSZ/Mo功能梯度材料的断口扫描分析发现:虽然金属钼和纳米氧化锆具有一定增韧作用,但材料断裂方式仍以脆性断裂为主。  相似文献   

7.
金明  黄克服 《工程力学》1998,(A01):168-172
本文研究Poisson比为1/2的Hooke材料中,空穴的突变和萌生现象,求解一个弹性力学的移动边界(movingboundary)问题。空穴为球形空穴,采用增量形式的Hooke定律及对数应变,在当前构形上列基本方程和边界条件,找到了这个移动边界问题的封闭解并得到空穴半径趋于零时的叉型分岔解。  相似文献   

8.
复合钙钛矿太阳能电池电荷传输层材料研究进展   总被引:1,自引:1,他引:1  
有机无机复合钙钛矿太阳能电池因具有适合的载流子扩散长度而成为备受关注的有望获得高效率的光伏器件。复合钙钛矿材料本身不含贵金属元素,可以采用液相法或物理气相法低温制备,成本低廉,但目前应用最多的电子传输层材料TiO2需400~500℃煅烧,与柔性基底及低温制备技术适应性差;空穴传输层材料SpiroOMeTAD合成工艺复杂,价格高昂,限制了复合钙钛矿太阳能电池的开发应用。开发和研究导电性好、成本低、稳定性好的电子和空穴传输层材料是复合钙钛矿太阳能电池研究中的一个非常重要的方面。综述了复合钙钛矿太阳能电池中电荷传输层材料的研究进展及发展方向。电子传输层材料方面通过对TiO2的改性以及与石墨烯的复合,采用ZnO、石墨烯或PCBM作为电子传输层材料,以与柔性基底及低温制备技术相适应。空穴传输层材料方面,采用其它低成本、导电性高的有机p型半导体替代spiro-OMeTAD;采用无机空穴传输层材料以避免有机空穴传输层材料的老化问题,提高电池的长期稳定性;利用复合钙钛矿材料兼作吸收层与空穴传输层,制备无空穴传输层材料结构电池以降低成本,提高稳定性。  相似文献   

9.
泡沫金属基复合相变材料的有效导热系数研究   总被引:1,自引:0,他引:1  
为了更有效地预测泡沫金属基复合相变材料(composite phase claange material,CPCM)的导热性能,提出了一种新的CPCM相分布模型,以此为基础建立了带有空穴子模型的简化传热模型,并利用等效热阻法推导得到泡沫金属基CPCM有效导热系数的通用计算式.传热模型考虑了相变过程中相变材料(plnase change material,PCM)的体积变化和空穴分布的影响,使得有效导热系数的计算结果更加符合实际.  相似文献   

10.
因为在材料的破坏过程中起着关键性作用,超弹性材料中空穴生成和预存空穴的突然增长问题得到大量关注[1~3]。超弹性材料中的空穴生成现象早于1958年已被Gent 和 Lindley[4] 在实验中观察到,直到1982年Ball[5] 才基于非线性弹性理论的框架对超弹性材料中的空穴突然生成问题进行了理论分析,将其模拟为一类空穴分岔问题。 Horgan 和Abeyaratne [6],Sivaloganathan[7] 将预存空穴的突然增长问题作为对空穴分岔问题的另一种解释。  相似文献   

11.
This study is devoted to the ductile-brittle transition behavior of a French A508 Cl3 (16MND5) steel. Due to its importance for the safety assessment of PWR vessels, a full characterization of this steel with Charpy V-notch test in this range of temperature was undertaken. The aim of this study is to provide a wide experimental database and microstructural observations to supply, calibrate and validate models used in a local approach methodology. Mechanical and fracture properties of the steel have been investigated over a wide range of temperatures and strain-rates. Effects of impact velocity on ductile-brittle transition curve, on ductile tearing and on notch temperature rise are presented and discussed. A detailed study of ductile crack initiation and growth in Charpy specimens is also carried out. From fractographic investigations of the microvoids nucleation around carbide second phase particles, a plastic strain threshold for nucleation is determined for this material. A508 Cl3 steels undergo a transition in fracture toughness properties with temperature, due to a change in fracture mode from microvoids coalescence to cleavage fracture. A systematic investigation on the nature and the position of cleavage triggering sites and on any change in the ductile to brittle transition (DBT) range has been carried out. This leads to the conclusion that manganese sulfide inclusions do not play an increasing role with increasing test temperature as recently mentioned in other studies on A508 Cl3 steel with a higher sulfur content. In a companion paper [Tanguy et al., Engng. Fract. Mech., in press], the numerical simulation of the Charpy test in the ductile-brittle transition range using fully coupled local approach to fracture is presented.  相似文献   

12.
The fracture behaviour of ferritic and ferritic martensitic steels in ductile to brittle transition (DBT) region has been extensively studied in recent years and a probabilistic approach of master curve method is generally used to describe the fracture toughness of BCC steels in DBT region as a function of temperature. The assessment of cleavage failure probability however is still untouched in the upper region of ductile to brittle transition, although various extensions of master curve approach and various local approaches has been explored. Additionally the geometry and loading in tension and bending also adds up to the difficulties when cleavage failure is assisted with prior ductile tearing. In this work the cleavage fracture is investigated in upper region of DBT and a modified master curve approach is presented which can satisfactorily describe the fracture toughness as a function of temperature as well as amount of ductile tearing preceded by cleavage.  相似文献   

13.
Both scientists and engineers are very much concerned with the study of ductile-to-brittle transition (DBT) in ferritic steels. For historical reasons the Charpy impact test remains widely used in the industry as a quality control tool to determine the DBT temperature. The transition between the two failure modes, i.e. brittle cleavage at low temperature and ductile fracture at the upper shelf occurs also at low loading rate in fracture toughness tests. Recent developments have been made in the understanding of the micromechanisms controlling either cleavage fracture in BCC metals or ductile rupture by cavity nucleation, growth and coalescence. Other developments have also been made in numerical tools such as the finite element (FE) method incorporating sophisticated constitutive equations and damage laws to simulate ductile crack growth (DCG) and cleavage fracture. Both types of development have thus largely contributed to modeling DBT occurring either in impact tests or in fracture toughness tests. This constitutes the basis of a modern methodology to investigate fracture, which is the so-called local approach to fracture. In this study the micromechanisms of brittle cleavage fracture and ductile rupture are firstly shortly reviewed. Then the transition between both modes of failure is investigated. It is shown that the DBT behavior observed in impact tests or in fracture toughness specimens can be reasonably well predicted using modern theories on brittle and ductile fracture in conjunction with FE numerical simulations. The review includes a detailed study of a number of metallurgical parameters contributing to the variation of the DBT temperature. Two main types of steels are considered : (i) quenched and tempered bainitic and martensitic steels used in the fabrication of pressurized water reactors, and (ii) modern high-toughness line-pipe steels obtained by chemical variations and optimized hot-rolling conditions. An attempt is also made to underline the research areas which remain to be explored for improving the strength-toughness compromise in the development of steels.  相似文献   

14.
The nature of the brittleness of Iridium crystal is still unclear. The aim of this study is to explore the mechanism of ductile‐to‐brittle transition (DBT) and the fracture behavior in polycrystalline Iridium. Tensile tests are conducted from room temperature to 1600 °C. Furthermore, fracture morphology and deformation substructures are characterized by OM, SEM, and TEM. The results show that the tensile strength increases anomalously below 600 °C and then decreases with the increasing temperature. The elongation increases slowly from room temperature to 700 °C, and it then changes sharply from 9.88% at 700 °C to 31% at 800 °C. Below 700 °C, the polycrystalline Iridium exhibits intergranular and partial transgranular cleavage fracture pattern. In contrast, the ductile fracture morphologies associated with microvoids coalescence are observed between 800 and 1600 °C. Massive tangling screw dislocations form at 700 °C and less tangles appear when stretching at 900 °C, manifesting that the DBT is around 800 °C in polycrystalline Iridium.
  相似文献   

15.
16.
The main mechanisms of brittle fracture upon ductile crack growth are studied on the basis of the probabilistic model of brittle fracture and the deterministic model of ductile fracture, which were put forward by the authors earlier. The investigations are carried out on the reactor pressure-vessel steel 15Kh2NMFAA in the initial and embrittled states. The dependences of brittle-fracture probability on the stress intensity factor and the value of ductile crack growth are calculated for various temperatures. The temperature dependence of brittle fracture toughness in the initial and embrittled states is predicted with and without regard for ductile crack growth. The authors analyze the main factors that govern the above-mentioned relationships. The calculated results are compared to test data for CT-type compact specimens.  相似文献   

17.
18.
使用Gleeble 3800热模拟试验机模拟F460钢单道次焊接条件下焊接粗晶热影响区的热循环过程,通过光镜(OM)、扫描电镜(SEM)分析热影响区的显微组织、确定临界事件,通过ABAQUS软件计算临界解理断裂应力σf,进而系统分析不同焊接热输入E下韧脆转变温度变化的内在机理。结果表明:随着E的提高,焊接粗晶热影响区显微组织依次为少量板条马氏体和大量细密的板条贝氏体,板条贝氏体较多的板条/粒状贝氏体,粒状贝氏体较多的板条/粒状贝氏体,粗大的粒状贝氏体。原始奥氏体晶粒、贝氏体团的最大尺寸随着E的提高而变大。在完全解理断裂的冲击断口上,寻找停留在缺口尖端附近的残留裂纹,通过对比残留裂纹长度、原始奥氏体晶粒大小、贝氏体团尺寸,发现不同E下解理断裂的临界事件尺寸都是贝氏体团大小,而临界事件尺寸越小,韧脆转变温度越低。此外,通过有限元模拟缺口尖端的应力分布得到σf,σf越大冲击韧度越好,随着E的提高σf降低,故进一步说明随着E的提高韧脆转变温度Tk上升的内在机理。  相似文献   

19.
The work is an initial effort on adopting a statistical approach to correlate the fracture behavior between a notched and a fracture mechanics specimen. The random nature of cleavage fracture process determines that both the microscopic fracture stress and the macroscopic properties including fracture load, fracture toughness, and the ductile to brittle transition temperature are all stochastic parameters. This understanding leads to the proposal of statistical assessment of cleavage induced notch brittleness of ferritic steels according to a recently proposed local approach model of cleavage fracture. The temperature independence of the 2 Weibull parameters in the new model induces a master curve to correlate the fracture load at different temperatures. A normalized stress combining the 2 Weibull parameters and the yield stress is proposed as the deterministic index to measure notch toughness. This proposed index is applied to compare the notch toughness of a ferritic steel with 2 different microstructures.  相似文献   

20.
Abstract

A transition layer of width 5 - 10 μm was found on the boundary between ductile and brittle fracture for Charpy V notch specimens in the transition temperature range of a structural steel having a microstructure of polygonal ferrite -pearlite. The fracture mode in the transition layer was shearing with occasional submicrometre dimples. From tensile tests on notched specimens, the cleavage fracture stress and flow stress by ductile decohesion were determined. Based on the experimental data and the assumption that the volume of metal involved in the plastic deformation during fracture was related to the volume of the dimples, it was deduced that the transition layer width represents the size of the plastic zone immediately before cleavage initiation. The crack opening displacement and the crack tip radius for the change of fracture mode were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号