首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the current paper, the performance of an external-fin-assisted thermosyphon is investigated experimentally. The thermosyphon is produced with a copper tube and includes three parts—the evaporator, the adiabatic, and the condenser. The condenser part is enhanced with external longitudinal fins. In this study, different number of fins, filling ratios (FRs), coolant flow rates, a wide range of heat inputs, and initial absolute pressures are considered. The experiments are carried out by measurement of temperature distribution of the thermosyphon's wall and the temperature difference of the coolant. The results depict that increasing the heat input and FR reduces the thermal resistance, while raising the coolant flow rate augments the thermal resistance. Adding external fins to the condenser causes further condensation, which enhances the thermosyphon thermal performance by a reduction of 26.32% in thermal resistance and an increment of 28.55% in the thermosyphon efficiency.  相似文献   

2.
重力热管内部包含复杂的两相流动以及相变传热过程,传统理论分析及实验手段不能直观给出其内部流动、相变、热质传递的详细信息。采用VOF(volume of fluid)多相流模型对重力热管内气液两相流动及传热进行模拟,捕捉到蒸发段气泡产生、合并、长大、上升,以及冷凝段壁面附近液滴形成、合并、下滑、汇集到液池的全过程,得到的壁温分布与实验测量值对比体现良好一致性,表明数值模拟的正确性。同时,以热阻、传热量和热效率为评价标准,研究不同充液率和倾斜角度下对重力热管运行性能的影响。结果表明:在所研究的参数范围内,随着充液率的增加,热阻逐渐减小,冷凝段传热量逐渐增大。且工质初始充注量充满蒸发段时热管性能较好;倾角对热阻的影响不明显,冷凝段传热量和热效率均随倾角增加而增长。  相似文献   

3.
The effect of the axial conduction through the pipe wall on the performance of a thermosyphon was experimentally investigated in this study. Two 2-phase closed thermosyphons were tested; each had the same dimensions, materials and partially filled with R134a. The only difference between them was that one had a thermal break within the adiabatic section that resisted axial conduction between the evaporator and the condenser sections. The thermosyphons were heated by a constant-temperature hot bath and cooled by water via a concentric heat exchanger. The experiments were performed for different bath temperatures and different fill ratios. It was found that the axial conduction through the pipe wall caused an increase in the overall heat transfer coefficient, evaporation heat transfer coefficient and condensation heat transfer coefficient of the thermosyphon. However, the fraction of heat transfer associated with axial conduction decreased as the heat flux increased. For small heat flux (Tb = 30 °C), the increment of the evaporation and condensation heat transfer coefficient contributed by axial conduction reached 100% and 25%, respectively. For high heat flux (Tb = 60 °C), the increment was negligible (less than 1%).  相似文献   

4.
K. S. Ong 《传热工程》2013,34(13):1091-1097
Experimental investigations were conducted to determine the thermal performances of an R-134a-filled thermosyphon heat pipe heat exchanger (THPHE) and a water-filled loop heat pipe heat exchanger (LHPHE) for hot and cold energy recovery for air conditioning purposes. For such applications, the heat pipe heat exchangers are operated at low temperatures. Both exchangers were operated in the countercurrent flow mode. This article presents the experimental results obtained. The results showed that heat transfer rate increased as evaporator inlet temperature increased and as both evaporator and condenser velocities increased. The overall effectiveness for the THPHE ranged from 0.8 to a minimum of about 0.5, while for the LHPHE it ranged from 0.9 to 0.3. Overall effectiveness was found to approach a minimum when both air streams have equal velocities.  相似文献   

5.
The closed-loop thermosyphon (CLT) has advantages of simple structure and reliability for transporting heat in long distances with small decrease in temperature. It is considered a promising cooling device for power electronics onboard ships. In this research, CLT for cooling of power electronics onboard ship was developed, and the performance was experimentally examined using a CLT apparatus. The performance was investigated for steady-state heat transfer under a wide range of pressures and heat loads from 18.3 kPa to 35.3 kPa and from 88.9 W to 616.2 W, respectively. The fill charge rates were 27% and 45%. The circulation coolant temperature at the condenser was set to 15°C. The measured data for each rated heat input were registered by a data logger in every 5-s increment of sampling data for a 30-min period. During the steady-state operation, CLT could maintain the system pressure and produced the vapor bulk temperature at around saturation boiling regime. The temperature distributions of the system were measured from each probed thermocouple along the loop. It is understood that higher heat inputs around above 349 W could keep the bulk vapor in an almost constant temperature from evaporation process up to the inlet position of the condenser. The condenser of the direct hull cooling method could also maintain the condensation process with a temperature decrease of around 30°C from the inlet vapor temperature of the condenser. It was clarified that the CLT has good thermal performance in the higher heat loads with low thermal resistance and provides a steady circulation loop from each two-phase process of heating in the evaporator and cooling during condensation.  相似文献   

6.
The characteristic of an integral type solar-assisted heat pump water heater (ISAHP) is investigated in the present study. The ISAHP consists of a Rankine refrigeration cycle and a thermosyphon loop that are integrated together to form a package heater. Both solar and ambient air energies are absorbed at the collector/evaporator and pumped to the storage tank via a Rankine refrigeration cycle and a thermosyphon heat exchanger. The condenser releases condensing heat of the refrigerant to the water side of the thermosyphon heat exchanger for producing a natural-circulation flow in the thermosyphon loop. A 105-liter ISAHP using a bare collector and a small R134a reciprocating-type compressor with rated input power 250 W was built and tested in the present study. The ISAHP was designed to operate at an evaporating temperature lower than the ambient temperature and a matched condition (near saturated vapor compression cycle and compressor exhaust temperature <100°C). A performance model is derived and found to be able to fit the experimental data very well for the ISAHP. The COP for the ISAHP built in the present study lies in the range 2.5–3.7 at water temperature between 61 and 25°C.  相似文献   

7.
《Energy》2002,27(2):167-181
This paper presents results of performance tests for R-22 and four alternative fluids (R-134a, R-32/134a (30/70%), R-407C, and R-410A) at operating conditions typical for a residential air conditioner. The study was performed in an experimental breadboard water-to-water heat pump in which a water/ethylene glycol mixture was used as the heat transfer fluid. The heat exchangers representing the evaporator and condenser were counter flow and cross flow, respectively. In tests performed at the same capacity, R-410A had the highest coefficient of performance. Test results for the system and data characterizing the performance of the heat exchangers and compressor are presented. The impact of the wide variations in the different alternative fluid properties on the system's operation and performance is particularly noted. The benefit of the liquid-line/suction-line heat exchange cycle is also addressed.  相似文献   

8.
Experimental heat transfer coefficients for R-134a and R-600a in horizontal tubes with vertically positioned perforated strip-type inserts are reported in this paper. Tests were conducted using a single-tube evaporator test facility. The test section used was 2000 mm long, 10.6 mm inside diameter, horizontal, smooth copper tube with perforated strip-type inserts made from the same material (copper). Test parameters were varied as follows: heat flux 9.1-31.2 kW/m2; mass velocity 82.3-603.3 kg/m2 s; quality 0-0.85, and a saturation temperature of 6 °C. The flow pattern were identified for different test tubes and flow conditions. The heat transfer coefficients for R-600a were higher than those for R-134a. The heat transfer performance and pressure drop can be improved up to 2.5 and 1.5, respectively for a 96 perforated holes enhanced tube. All comparisons were based on the same nominal mass flow rate. Finally, an empirical correlation was developed.  相似文献   

9.
The application of flow boiling in microchannels in copper cooling elements for very high heat flux dissipation from microprocessor chips is one of the promising technologies to replace air cooling and water cooling of these units, particularly in mainframes and servers. Recently, the authors have proposed a new theoretical model to predict the critical heat flux (CHF) in microchannels, and it is used here to perform a parametric study to investigate the effects of fluid, saturation temperature, mass flux, inlet subcooling, microchannel diameter, and heated length on CHF for this application. The parametric study shows that CHF is increased by: (i) decreasing channel length, (ii) lowering saturation temperature, (iii) increasing mass flux, (iv) increasing inlet subcooling, and (v) increasing microchannel diameter. The best coolant is water, but water is not feasible for the present application because of its very low saturation pressure at 30–40°C. Of the other four fluids simulated, their order of merit from best to worst is as follows: R-245fa, R-134a, R-236fa, and FC-72. FC-72, however, has a low saturation pressure (in fact, it would operate under vacuum at the saturation temperatures of 30–40°C envisioned here) and is not a candidate fluid for the flow boiling coolant here. Furthermore, the authors have also recently proposed a diabatic flow map for microchannels based on their database for R-134a and R-245fa in 0.5- and 0.8-mm channels. The new CHF model has been incorporated into their map here to predict the transition from annular flow to dry-out, which is a critical design limitation for microprocessor coolers. Importantly, this map then provides the feasible operating range of such coolers with flow boiling as the cooling process, in terms of mass flux and maximum vapor quality at the outlet to avoid CHF.  相似文献   

10.
《Applied Thermal Engineering》2001,21(15):1551-1563
The heat pipe turbine or thermosyphon Rankine engine is a new concept for power generation using solar, geothermal or other available low grade heat sources. The basis of the engine is the thermosyphon cycle, with its excellent heat and mass transfer characteristics, modified to incorporate a turbine in the adiabatic region. The basic configuration is a closed vertical cylinder functioning as an evaporator, an insulated section and a condenser. The turbine is placed in the upper end between the insulated section and condenser section, and a plate is installed to separate the high pressure region from the low pressure region in the condenser. Conversion of enthalpy to kinetic energy is achieved through the nozzles. The mechanical energy developed by the turbine can be converted to electrical energy by direct coupling to an electrical generator.This paper describes the development of the heat pipe turbine from concept to reality, a series of development steps taken to optimise the design and manufacture. Also in this paper, attempts have been made to provide relationships for the developed power in terms of the geometric and thermodynamic parameters and to discuss limitations on the efficiencies of these turbines.  相似文献   

11.
An experimental set-up is built incorporating only two principle components, viz, absorber and generator of vapor absorption refrigeration system (VARS) to investigate heat and mass transfer characteristics of absorber. The refrigerant, R134a (1,1,1,2-tetrafluroethane) is absorbed by R134a-DMAC (N,N-dimethylacetamide) solution flowing over the horizontal tubes arranged as tube bank. The effect of solution flow rate, coolant flow rate and temperature, heater load and concentration of R134a is studied. The performance parameters like solution exit temperature from tubes, state point temperatures, heat flux, mass flux, and overall heat and mass transfer coefficients are presented for different operating condition of absorber. For lower flow rate of the solution and higher flow rate of the coolant, the bulk solution temperature is found to decrease. The heat and mass transfer coefficients increase with mass flow rate of the solution. An increase in inlet temperature of coolant results into an increase in overall heat transfer coefficient and decrease in overall mass transfer coefficient.  相似文献   

12.
A vapour compression simulation model was developed. Simple mathematical models were employed for each component of the cycle. They resulted in a set of nonlinear equations, which was solved numerically. Heat losses from condenser to ambient were included. The model is capable of predicting the operating point of the system (including condensing and evaporating pressures) as a function of equipment characteristics (for example, compressor swept volume, speed and clearance ratio, and heat exchanger overall conductances) and prevailing thermodynamic conditions (such as heat source and heat sink temperatures with the mass flow rates of their fluids). The predicted performance was compared to that of an existing R-12 unit, showing good agreement. As an application, a comparative analysis is made on the thermodynamic performance of a domestic heat pump running on two different refrigerants: R-12 and R-134a.  相似文献   

13.
An experimental apparatus of a two-phase closed thermosyphon has been designed and constructed to predict its performance characteristics under stationary and vibrated conditions. Water and R134a are used as working fluids. Experiments are carried out over wide ranges of liquid fill ratio (0.4, 0.5, 0.6 and 0.8), length of adiabatic section (275, 325 and 350 mm), vibration frequency (0.0–4.33 Hz) and input heat flux (160–2800 kW/m2). The results showed that adiabatic length of 350 mm and liquid fill ratio of 0.5 provide the highest output heat flux. The effect of vibration is to deteriorate the water-copper thermosyphon performance below the boiling limit by 5–20% and enhance it at the onset of boiling limit by almost the same ratio over the examined range of input heat flux. Minor or no effect is experienced with R134a below the boiling limit and enhancement up to 250% existed above the boiling limit.  相似文献   

14.
This paper reports an experimental investigation of a closed-loop thermosyphon system charged with water and other low saturation fluids, such as ethanol, acetone, and methanol, for different adiabatic lengths, filling ratios, and heat loads. The closed-loop thermosyphon with two inline vertical heaters in the evaporator section and forced air-cooled plate-type heat exchanger in the condenser section, connected by a changeable adiabatic length, is investigated at different working conditions. Out of five filling ratios used in the analysis, at 0.6 filling ratio, the loop thermosyphon is seen to be operated at its best. The acetone-charged loop thermosyphon shows the lowest values (up to 72% reduction) of overall thermal resistance than that of other fluids and significantly higher effectiveness, due to the plate-type forced air-cooled condenser. For the acetone-filled thermosyphon, an almost 15% increase in the effectiveness is observed by changing the adiabatic length from 800 to 200 mm. This study suggests that the limitation of the loop thermosyphon with a water-cooled condenser to cool electronic components, computational clusters, and data centers is well fulfilled by the loop thermosyphon with plate-type forced air-cooled condenser. The nucleate pool boiling correlation is developed and validated for the loop thermosyphon system to determine the evaporator heat transfer coefficient.  相似文献   

15.
热虹吸管传热过程中的熵增分析   总被引:3,自引:0,他引:3  
以热力学理论为基础,对稳定操作条件下的热虹吸管的重要操作参数、工作特点及其内部工质循环过程进行详细分析,导出了由于存在温度差、工质流动摩擦损失、蒸气温度/压力降等因素而引起的熵增的表达式,并由此得到相应的最小熵增优化准则。所得到的热虹吸管重要操作条件,即蒸发段和冷凝段温度匹配关系以及其它重要影响参数的关系,可以为热管实际设计和应用提供重要的理论参考。  相似文献   

16.
This article describes an experimental investigation to measure performances of a vapor absorption refrigeration system of 1 ton of refrigeration capacity employing tetrafluoro ethane (R134a)/dimethyl formamide (DMF). Plate heat exchangers are used as system components for evaporator, condenser, absorber, generator, and solution heat exchanger. The bubble absorption principle is employed in the absorber. Hot water is used as a heat source to supply heat to the generator. Effects of operating parameters such as generator, condenser, and evaporator temperatures on system performance are investigated. System performance was compared with theoretically simulated performance. It was found that circulation ratio is lower at high generator and evaporator temperatures, whereas it is higher at higher condenser temperatures. The coefficient of performance is higher at high generator and evaporator temperatures, whereas it is lower at higher condenser temperatures. Experimental results indicate that with addition of a rectifier as well as improvement of vapor separation in the generator storage tank, the R134a/DMF-based vapor absorption refrigeration system with plate heat exchangers could be very competitive for applications ranging from –10°C to 10°C, with heat source temperature in the range of 80°C to 90°C and with cooling water as coolant for the absorber and condenser in a temperature range of 20°C to 35°C.  相似文献   

17.
In this paper, geyser boiling phenomenon (GBP) in a two-phase closed thermosyphon has been investigated experimentally. Here, the effects of the inclination angle, filling ratio, input heat rate, mass flowrate of coolant, and inside diameter of the tube on the GBP have been discussed. Three copper thermosyphons with inside diameters of 14 mm, 20 mm, and 24 mm and a length of 1000 mm were employed. Distilled water was used as the working fluid. A series of experiments was carried out to investigate the effect of the inclination angle range of 5° to 90°, the input heat rate range of 50 to 312.4 W, the coolant mass flow rate range of 0.00389 to 0.0164 kg/s, and the filling ratio range of 15 to 45%. The GBP has been investigated by analyzing the time variations of the evaporator and adiabatic wall temperature and outlet water temperature from condenser jacket. The results show that the period of GBP was longer for higher inclination angles and filling ratios. Furthermore, it was discovered that the GBP did not take place for inclination angles of less than 15°.  相似文献   

18.
Subcooled flow boiling heat transfer characteristics of refrigerant R-134a in a vertical plate heat exchanger (PHE) are investigated experimentally in this study. Besides, the associated bubble characteristics are also inspected by visualizing the boiling flow in the vertical PHE. In the experiment two vertical counterflow channels are formed in the exchanger by three plates of commercial geometry with a corrugated sinusoidal shape of a chevron angle of 60°. Upflow boiling of subcooled refrigerant R-134a in one channel receives heat from the downflow of hot water in the other channel. The effects of the boiling heat flux, refrigerant mass flux, system pressure and inlet subcooling of R-134a on the subcooled boiling heat transfer are explored in detail. The results are presented in terms of the boiling curves and heat transfer coefficients. The measured data showed that the slopes of the boiling curves change significantly during the onset of nucleate boiling (ONB) especially at low mass flux and high saturation temperature. Besides, the boiling hysteresis is significant at a low refrigerant mass flux. The subcooled boiling heat transfer coefficient is affected noticeably by the mass flux of the refrigerant. However, increases in the inlet subcooling and saturation temperature only show slight improvement on the boiling heat transfer coefficient.The photos from the flow visualization reveal that at higher imposed heat flux the plate surface is covered with more bubbles and the bubble generation frequency is substantially higher, and the bubbles tend to coalesce to form big bubbles. But these big bubbles are prone to breaking up into small bubbles as they move over the corrugated plate, producing strong agitating flow motion and hence enhancing the boiling heat transfer. We also note that the bubbles nucleated from the plate are suppressed to a larger degree for higher inlet subcooling and mass flux. Finally, empirical correlations are proposed to correlate the present data for the heat transfer coefficient and the bubble departure diameter in terms of boiling, Froude, Reynolds and Jakob numbers.  相似文献   

19.
An experimental investigation of the performance of thermosyphons charged with water as well as the dielectric heat transfer liquids FC-84, FC-77 and FC-3283 has been carried out. The copper thermosyphon was 200 mm long with an inner diameter of 6 mm, which can be considered quite small compared with the vast majority of thermosyphons reported in the open literature. The evaporator length was 40 mm and the condenser length was 60 mm which corresponds with what might be expected in compact heat exchangers. With water as the working fluid two fluid loadings were investigated, that being 0.6 ml and 1.8 ml, corresponding to approximately half filled and overfilled evaporator section in order to ensure combined pool boiling and thin film evaporation/boiling and pool boiling only conditions, respectively. For the Fluorinert? liquids, only the higher fill volume was tested as the aim was to investigate pool boiling opposed to thin film evaporation. Generally, the water-charged thermosyphon evaporator and condenser heat transfer characteristics compared well with available predictive correlations and theories. The thermal performance of the water-charged thermosyphon also outperformed the other three working fluids in both the effective thermal resistance as well as maximum heat transport capabilities. Even so, FC-84, the lowest saturation temperature fluid tested, shows marginal improvement in the heat transfer at low operating temperatures. All of the tested Fluorinert? liquids offer the advantage of being dielectric fluids, which may be better suited for sensitive electronics cooling applications and were all found to provide adequate thermal performance up to approximately 30–50 W after which liquid entrainment compromised their performance.  相似文献   

20.
对制冷剂R134a在水平强化换热管管内的凝结换热性能进行了实验研究。实验管为两种内微翅管,分别命名为A管和B管。实验件采用套管结构,强化内管外表面和外管内表面之间(管间)走乙二醇水溶液。实验过程中管内冷凝温度为51℃,管间乙二醇水溶液的流速为3.35 m/s,乙二醇水溶液的进口温度根据制冷剂的质量流速做相应调整,以保证试件出口制冷剂有一定的过冷度。实验结果表明:两种水平强化管的管内冷凝换热系数均随着制冷剂质量流速的增加而增大,在制冷剂质量流速从300 kg/(m2.s)增加到700kg/(m2.s)时,A管的管内冷凝换热系数比B管高1.87%到6.28%,而B管的制冷剂流动阻力比A管高9.56%到11.05%,A管的结构优于B管。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号