首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time, an in‐depth study has been made of the distribution of fibers and cell bodies containing calcitonin gene‐related peptide (CGRP) in the minipig brainstem using an indirect immunoperoxidase technique. The animals studied were not treated with colchicine. Cell bodies containing CGRP were found in 20 nuclei/regions of the brainstem. These perikarya were located in somatomotor, brachiomotor and raphae nuclei, nucleus ambiguus, substantia nigra, nucleus reticularis tegmenti pontis, nucleus prepositus hypoglossi, nuclei olivaris inferior and superior, nuclei pontis, formatio reticularis, nucleus dorsalis tegmenti of Gudden, and in the nucleus reticularis lateralis. Fourteen of the 20 brainstem nuclei showed a high density of immunoreactive cell bodies. In comparison with other species, the minipig, together with the rat, show the most widespread distribution of cell bodies containing CGRP in the mammalian brainstem. Immunoreactive fibers were also observed in the brainstem. However, in the minipig brainstem the density of these fibers is low, as in many brainstem nuclei only single immunoreactive fibers were observed. A high density of immunoreactive fibers was only observed in the pars caudalis of the nucleus tractus spinalis nervi trigemini and in the nucleus ventralis tegmenti of Gudden. According to the observed anatomical distribution of the immunoreactive structures containing CGRP, the peptide could be involved in motor, somatosensory, gustative, and autonomic mechanisms. Microsc. Res. Tech. 77:374–384, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Modulation of visual signal activity has consequences for both signal processing and for activity-dependent structuring mechanisms. Among the neuromodulatory agents found in visual areas are substance P (SP)-related peptides. This article reviews what is known about these substances in the amphibian retina and optic tectum with special emphasis on the leopard frog, Rana pipiens. It is found that the distribution of these SP-related peptides is remarkably similar to that seen in mammals. This suggests that study of model amphibian systems may significantly enhance our understanding of how neuropeptides contribute to visual system function and organization.  相似文献   

3.
Using an indirect immunoperoxidase technique, we studied the distribution of cell bodies and fibers containing somatostatin‐28 (1‐12) in the alpaca brainstem. Immunoreactive fibers were widely distributed throughout the whole brainstem: 34 brainstem nuclei/regions showed a high or a moderate density of these fibers. Perikarya containing the peptide were widely distributed throughout the mesencephalon, pons and medulla oblongata. Cell bodies containing somatostatin‐28 (1‐12) were observed in the lateral and medial divisions of the marginal nucleus of the brachium conjunctivum, reticular formation (mesencephalon, pons and medulla oblongata), inferior colliculus, periaqueductal gray, superior colliculus, pericentral division of the dorsal tegmental nucleus, interpeduncular nucleus, nucleus of the trapezoid body, vestibular nucleus, motor dorsal nucleus of the vagus, nucleus of the solitary tract, nucleus praepositus hypoglossi, and in the substantia nigra. This widespread distribution indicates that somatostatin‐28 (1‐12) is involved in multiple physiological actions in the alpaca brainstem. Microsc. Res. Tech. 78:363–374, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
The neural control of the subcommissural organ (SCO) has been partially characterized. The best known input is an important serotonergic innervation in the SCO of several mammals. In the rat, this innervation comes from raphe nuclei and appears to exert an inhibitory effect on the SCO activity. A GABAergic innervation has also been shown in the SCO of the rat and frog Rana perezi. In the rat, GABA and the enzyme glutamate decarboxylase are involved in the SCO innervation. GABA is taken up by some secretory ependymocytes and nerve terminals, coexisting with serotonin in a population of synaptic terminals. Dopamine, noradrenaline, and different neuropeptides such as LH-RH, vasopressin, vasotocin, oxytocin, mesotocin, substance P, alpha-neoendorphin, and galanin are also involved in SCO innervation. In the bovine SCO, an important number of fibers containing tyrosine hydroxylase are present, indicating that in this species dopamine and/or noradrenaline-containing fibers are an important neural input. In Rana perezi, a GABAergic innervation of pineal origin could explain the influence of light on the SCO secretory activity in frogs. A general conclusion is that the SCO cells receive neural inputs from different neurotransmitter systems. In addition, the possibility that neurotransmitters and neuropeptides present in the cerebrospinal fluid may also affect the SCO activity, is discussed.  相似文献   

5.
The superior olivary complex (SOC) is a mammalian auditory brainstem structure that contains several nuclei. Some of them are part of the ascending system projecting to higher auditory centers, others belong to the descending system projecting to the cochlear nuclei or the cochlea itself. The main nuclei of the ascending system, the lateral and medial superior olive (LSO, MSO), as well as the lateral and medial nuclei of the trapezoid body (LNTB, MNTB), have been traditionally associated with sound localization. Here we review the results of recent studies on the main SOC nuclei in echolocating bats. These studies suggest that some SOC structures and functions are highly conserved across mammals (e.g., the LSO, which is associated with interaural intensity difference processing), while others are phylogenetically highly variable in both form and function (e.g., the MSO, traditionally associated with interaural time difference processing). For the MSO, these variations indicate that we should broaden our view regarding what functions the MSO might participate in, since its function in echolocation seems to lie in the context of pattern recognition rather than sound localization. Furthermore, across bat species, variations in the form and physiology of the MSO can be linked to specific behavioral adaptations associated with different echolocation strategies. Finally, the comparative approach, including auditory specialists such as bats, helps us to reach a more comprehensive view of the functional anatomy of auditory structures that are still poorly understood, like the nucleus of the central acoustic tract (NCAT).  相似文献   

6.
The S100 protein in nervous tissue appears to play important roles in regulating neuronal differentiation, glial proliferation, plasticity, development, axonal growth, and in neurogenetic processes. In fish, the adult neurogenic activity is much higher than in mammals. In this study, the localization of S100 protein was investigated in the brain of annual teleost fish, Nothobranchius furzeri, which is an emerging model organism for aging research. By immunohistochemical techniques, S100 immunoreactivity (IR) was detected in glial cells, small neurons, and fibers throughout all regions of central nervous system (CNS) with different pattern of distribution. In the telencephalon, S100 IR was seen in the olfactory bulbs and in different areas of the telencephalic hemispheres. In the diencephalon, S100 positivity was observed in the habenular nuclei of the epithalamus, in the cortical thalamic nucleus, in the dorsal, ventral and caudal portions, the latter with the posterior recessus nucleus, and in the diffuse inferior lobe of the hypothalamus, along the diencephalic ventricle and in the dorsal optic tract. In the mesencephalon, S100 IR was observed in the longitudinal tori, in the optic tectum, and along the mesencephalic ventricle. In the rhombencephalon, S100 IR was shown in valvula and body of the cerebellum, and in some nuclei of the medulla oblongata. The results suggest that S100 may play a key role in the maintenance of the CNS and in neurogenesis processes in the adulthood.  相似文献   

7.
The origin of perivascular nerve fibres storing nitric oxide synthase (NOS) and co-localisation with perivascular neuropeptides were examined in the rat middle cerebral artery (MCA) by retrograde tracing with True Blue (TB) in combination with immunocytochemistry. Application of TB to the proximal part of the middle cerebral artery labelled nerve cell bodies ipsilaterally in the trigeminal, sphenopalatine, otic, and superior cervical ganglia. A few labelled cell bodies were seen contralaterally, suggesting bilateral innervation. In the parasympathetic sphenopalatine and otic ganglia, numerous TB-labelled cell bodies contained neuronal NOS (C- and N-terminal), vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase activating peptide (PACAP). In the trigeminal ganglion, almost all TB-labelled cell bodies contained calcitonin gene-related peptide (CGRP) but only a few cells contained NOS. In the superior cervical ganglion, the majority of the TB-labelled nerve cells contained neuropeptide Y (NPY) but none of them contained NOS. Removal of the ipsilateral sphenopalatine ganglion caused a slight reduction in the number of perivascular VIP-, PACAP-, and NOS-containing fibres after 3 days in the MCA while there was no difference at 2 and 4 weeks after the denervation as compared to control. This indicates that the parasympathetic VIP-, PACAP-, and NOS-immunoreactive nerve fibres in the rat MCA originate from several sources.  相似文献   

8.
In this study, we report ghrelin and leptin immunoreactive (ir) cells distribution in the gastrointestinal tract and blood ghrelin and leptin levels in rainbow trout (Oncorhynchus mykiss) and Murray cod (Maccullochella peelii peelii) fed diets with different fatty acid compositions. Juvenile rainbow trout and Murray cod were fed five iso-energetic experimental diets containing fish oil (FO) or one of the following vegetable oils (VO): olive oil (OO), sunflower oil (SO), linseed oil (LO), and palm oil (PO); as the added dietary lipid source. The presence and distribution of both ghrelin and leptin ir cells in the gastrointestinal tract were affected by the inclusion of VO. Ghrelin ir cells were found in the gastric glands of rainbow trout and in the mioenteric plexuses of the stomach of Murray cod fed FO. Ghrelin ir cells were localized in the mucosa of the intestine of rainbow trout and Murray cod fed VO. Leptin ir cells were more abundant in the epithelial lining of the mucosa folds and in the glands of the stomach of rainbow trout fed VO. Leptin immunoreactivity was detected in the gastric mioenteric plexus of Murray cod fed FO. No differences were found both in ghrelin and leptin levels in blood plasma or in the growth rates of rainbow trout and Murray cod fed the different experimental diets. These observations suggest that dietary fatty acids play a role in the peripheral feeding regulation.  相似文献   

9.
The typology, number, and distribution pattern of antennal sensilla of the ground beetle Platynus dorsalis (Pontoppidan) (Coleoptera, Carabidae) were studied using scanning electron microscopy. The 4.3-4.6-mm-long filiform antennae of the beetles consist of the scape, pedicel, and nine flagellomeres. In both sexes, four subtypes of sensilla chaetica, five subtypes of sensilla basiconica, sensilla trichodea, two subtypes of sensilla campaniformia, sensilla auricillica, and sensilla coeloconica were distinguished. The possible function of the sensilla was discussed and three types of sensilla were considered as olfactory, sensilla trichodea and sensilla basiconica types 1 and 2. Olfactory sensilla form two separate, dorsal and ventral, fields of sensilla on the flagellomeres, which seems to be common in ground beetles. The total numbers of olfactory trichoid (approximately 1,000 hairs) and basiconic sensilla type 1 (1,700-1,800 pegs) on the antennae of P. dorsalis are 5-7 times higher than on the antennae of the ground beetle Bembidion lampros, suggesting that nocturnally active P. dorsalis is much more sensitive to odours perceived by these sensilla than B. lampros with diurnal activity and hunting predominantly by sight. No remarkable sexual differences in the types, numbers, and distribution of antennal sensilla were found in P. dorsalis.  相似文献   

10.
Nitric oxide (NO) is a gaseous intercellular messenger with a wide range of neural functions. NO is synthesized by activation of different isoforms of nitric oxide synthases (NOS). At present NOS immunoreactivity has been described in mouse brain in restricted and definite areas and no detailed mapping studies have yet been reported for NOS immunoreactivity. We have studied the distribution of neuronal NOS-containing neurons in the brain of three months male mice, using a specific commercial polyclonal antibody against the neuronal isoform of nitric oxide synthase (nNOS). Neuronal cell bodies exhibiting nNOS immunoreactivity were found in several distinct nuclei throughout the brain. The neurons that were positively stained exhibited different intensities of reaction. In some brain areas (i.e., cortex, striatum, tegmental nuclei) neurons were intensely stained in a Golgi-like fashion. In other regions, immunoreactive cells are moderately stained (i.e., magnocellular nucleus of the posterior commissure, amygdaloid nucleus, interpeduncular nucleus, lateral periaqueductal gray) or weakly stained (i.e., vascular organ of the lamina terminalis, hippocampus, inferior colliculus, reticular nucleus). In the mouse, the NO-producing system appears well developed and widely diffused. In particular, nNOS immunoreactive neurons seem chiefly present in several sensory pathways like all the nuclei of the olfactory system, as well as in many regions of the lymbic system. These data suggest a widespread role for the NO system in the mouse nervous system.  相似文献   

11.
The separate cellular regions of the reptilian cerebral cortex were studied using Numerical Taxonomy. Three parameters were employed: a) The area occupied by each region at the several levels studied. b) The total area of the cell nuclei present in each level. c) The average are of these nuclei. Numerical Taxonomy resolves the problem by means of a dendrogram which represents the normalised distances, which indicate levels of similarity on absciassas. The elements studies are on the ordinate axis. The dendrogram shows the different levels of similarity existing between each one of the chosen populations. Depending upon the degree of similarity one may deduce the similarities or differences existing between these populations, and also the characteristics of each cellular population throughout the length of its presence in the cerebral cortex and the variations between the regions. These results, in the first place, relate to the four cortical regions: medialis cortex, dorsomedialis cortex, dorsalis cortex, and lateralis cortex, and in the second place, to each one of the regions within the entire telencephalic cortex.  相似文献   

12.
The superior olivary complex (SOC), a group of interrelated brainstem nuclei, sends efferents to a variety of neuronal structures including the cochlea and the inferior colliculus. The present review describes data obtained from rodents providing evidence that the gaseous, short-living neuroactive substance nitric oxide (NO) is produced in the SOC. The NO-synthesizing enzyme neuronal NO-synthase (nNOS) has been localized by means of several methods including histochemistry and immunohistochemistry. Perikarya containing nNOS were found in several nuclei of the SOC. Their largest numbers and percentages of total cells were observed in the medial nucleus of the trapezoid body. Stained terminals were observed mainly in the lateral superior olivary nucleus and in the superior paraolivary nucleus. While retrograde neuronal tracing identified a considerable number of nNOS-immunoreactive neurons as to be part of the olivo-cochlear pathway, the projection patterns of other nNOS-immunoreactive SOC cell groups remain to be investigated. We also review other putative sources of cochlear NO, and discuss the possible role of NO in the lower auditory brainstem and organ of Corti with regard to physiological and pathophysiological mechanisms.  相似文献   

13.
This research was aimed to present the histological and ultrastructure properties of the adrenal gland in the Persian squirrel. Two male and female animals were included in the study. The adrenal gland was bean-shaped and located on the cranial pole of kidney. The enveloping capsule was dense connective tissue that reacted positively with Periodic-Acid Schiff (PAS) and Masson trichrome stainings. The parenchyma of the gland consisted of two-part, namely cortex and medulla; the cortex had three layers: zona glomerulosa (ZG), zona fasciculata (ZF), and zona reticularis (ZR). The cells of the ZG were mainly spherical and ovoid with circular arrangement and few lipid droplets in TEM micrographs. The cells of the ZF were columnar and spherical that were arranged in cord-like rows. Transmission electron microscopy (TEM) indicated conspicuous lipid droplets and mitochondria in this zone. The cells of the ZR were arranged in a tangled networks and were almost similar to those in the ZF. TEM images showed fewer lipid vesicles in the ZR compared to the ZF and ZG. Chromaffin cells were located in the medulla of the adrenal gland in two layers. TEM images showed that some of them were smaller and contained fewer secretory granules; other cells were larger and contained more electron-dense secretory granules. Immunofluorescence staining showed that steroidogenic factor 1 (SF1) expressed from cortex to the corticomedullary junction (CMJ) and tyrosine hydroxylase (TH) expressed in the medulla. In conclusion, the results indicated both similarities and differences between the adrenal gland of the Persian squirrel and other animals such as mammals and rodents.  相似文献   

14.
The use of cyclosporine (CsA) has shown to induce an increase in density of oligodendrocytes near remyelinating areas following the injection of ethidium bromide (EB), a demyelinating agent, in the rat brainstem. It is also known that diabetes mellitus was capable of delaying remyelination by both oligodendrocytes and Schwann cells in this gliotoxic model. This study was designed to assess whether CsA had the capacity to improve remyelination in streptozotocin‐induced (50 mg/kg, intraperitoneal route) diabetic rats. Diabetic Wistar rats were divided in different groups receiving 10 microlitres of 0.1% EB or 0.9% saline solution into the cisterna pontis and were treated or not with CsA. During 7 days and, thereafter, three times a week, 10 mg/kg/day of CsA were given by intraperitoneal route. The rats were euthanized from 7 to 31 days after EB or saline injection and brainstem sections were collected and processed for light and transmission electron microscopy studies. Results from different groups were compared by using a semi‐quantitative method developed for documenting the extent and nature of remyelination in semithin sections following gliotoxic lesions. Results showed that CsA administration to diabetic rats after EB injection stimulate both oligodendroglial and Schwann cell remyelination (mean remyelination scores of 3.15 ± 0.5 for oligodendrocytes and 1.36 ± 0.58 for Schwann cells) compared to untreated animals (2.52 ± 0.71 for oligodendrocytes and 0.73 ± 0.47 for Schwann cells, respectively). CsA given to diabetic rats was capable of reversing some of the deleterial effects of diabetes on remyelination. Microsc. Res. Tech. 76:714–722, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
The superior olivary complex (SOC) is part of the auditory brainstem of the vertebrate brain. Residing ventrally in the rhombencephalon, it receives sensory signals from both cochleae through multisynaptic pathways. Neurons of the SOC are also a target of bilateral descending projections. Ascending and descending efferents of the SOC affect the processing of auditory signals on both sides of the brainstem and in both organs of Corti. The pattern of connectivity indicates that the SOC fulfills functions of binaural signal integration serving sound localization. But whereas many of these connectional features are shared with the inferior colliculus (with the important exception of a projection to the inner ear), cellular and molecular investigations have shown that cells residing in SOC are unique in several respects. Unlike those of other auditory brainstem nuclei, they specifically express molecules known to be involved in development, plasticity, and learning (e.g., GAP-43 mRNA, specific subunits of integrin). Moreover, neurons of the SOC in adult mammals respond to various kinds of hearing impairment with the expression of plasticity-related substances (e.g., GAP-43, c-Jun, c-Fos, cytoskeletal elements), indicative of a restructuring of auditory connectivity. These observations suggest that the SOC is pivotal in the developmental and adaptive tuning of binaural processing in young and adult vertebrates.  相似文献   

16.
Vision is the most important sensory modality to anurans and a great deal of work in terms of hodological, physiological, and behavioral studies has been devoted to the visual system. The aim of this account is to survey data about the distribution of peptides in primary (lateral geniculate complex, pretectum, tectum) and secondary (striatum, anterodorsal and anteroventral tegmental nuclei, isthmic nucleus) visual relay centers. The emphasis is on general traits but interspecies variations are also noted. The smallest amount of peptide-containing neuronal elements was found in the lateral geniculate complex, where primarily nerve fibers showed immunostaining. All peptides found in the lateral geniculate complex, except two, occurred in the pretectum together with four other peptides. A large number of neurons showing intense neuropeptide thyrosine-like immunoreactivity was characteristic here. The mesencephalic tectum was the richest in peptide-like immunoreactive neuronal elements. Almost all peptides investigated were present mainly in fibers, but 9 peptides were found also in cells. The immunoreactive fibers show a complicated overlapping laminar arrangement. Cholecystokinin octapeptide, enkephalins, neuropeptide tyrosine, and substance P (not discussed here) gave the most prominent immunoreactivity. Several peptides also occur in the tectum of fishes, reptiles, birds, and mammals. Peptides in various combinations were found in the striatum, the anterodorsal- and anteroventral tegmental nucleus, and the isthmic nucleus that receive projections from the primary visual centers. The functional significance of peptides in visual information processing is not known. The only exception is neuropeptide tyrosine, which was found to be inhibitory on retinotectal synapses.  相似文献   

17.
Lectinocytochemistry provides a useful tool for localizing subcompartments of the complex reticular apparatus of Golgi. The technique is based on interactions of lectins with glycoconjugates present in the limiting membranes and luminal spaces of Golgi elements. Application of a series of lectins of different sugar specificities permits a differentiation between Golgi subcompartments containing glycoconjugates with different oligosaccharide side chains. These may be (a) different glycoconjugates or (b) glycoconjugates at different stages during synthesis or repair of their glycans. The lectinocytochemical studies with mannose-, glucose-, N-acetyl-glucosamine-, N-acetylgalactosamine-, galactose-, fucose-, and sialic acid-recognizing lectins revealed predominating patterns that labeled distinct, i.e., cis, medial, trans, and transmost, regions of the Golgi apparatus. A further refinement could be achieved by differential lectin-inhibition that enables a dissection of lectin binding reactions on the basis of their binding affinities. High-affinity binding reactions showed that subcompartments are not necessarily confined to one single Golgi subregion and may change their position from one to another subregion. Some of the patterns observed may be interpreted in relation to certain steps during synthesis and modifications of glycans.  相似文献   

18.
The mammalian pineal gland is innervated by peripheral sympathetic and parasympathetic nerve fibers as well as by nerve fibers originating in the central nervous system (central innervation). The perikarya of the sympathetic fibers are located in the superior cervical ganglia, while the fibers terminate in boutons containing small granular vesicles and a few large granular vesicles. Both noradrenaline and neuropeptide Y are contained in these neurons. The parasympathetic fibers originate from perikarya in the pterygopalatine ganglia. The neuropeptides, vasoactive intestinal peptide and peptide histidine isoleucine, are present in these fibers, the boutons of which contain small clear transmitter vesicles and larger granular vesicles. The fibers of the central innervation originate predominantly from perikarya located in hypothalamic and limbic forebrain structures as well as from perikarya in the optic system. These fibers terminate in boutons containing small clear and, in certain fibers, an abundant number of large granular vesicles. In rodents, the majority of the central fibers terminate in the deep pineal gland and the pineal stalk. From these areas impulses might be transmitted further caudally to the superficial pineal gland via neuronal structures or processes from pinealocytes. Several hypothalamic neuropeptides and monoamines might be contained in the central fibers. The intrapineal nerve fibers are located both in the perivascular spaces and intraparenchymally. The majority of the intraparenchymally located fibers terminate freely between the pinealocytes. However, some nerve terminals make synaptic contacts with the pinealocytes and in some species with intrapineal neurons. In fetal mammals, sympathetic, parasympathetic, and central fibers are also present. In addition, an unpaired nerve, connecting the caudal part of the pineal gland with the extreme rostral part of the mesencephalon, is present. This nerve is a homologue to the pineal nerve (nervus pinealis) observed in lower vertebrates.  相似文献   

19.
Developing tooth enamel is formed as organized mineral in a specialized protein matrix. In order to analyze patterns of enamel mineralization and enamel protein expression in species representative of the main extant vertebrate lineages, we investigated developing teeth in a chondrichthyan, the horn shark, a teleost, the guppy, a urodele amphibian, the Mexican axolotl, an anuran amphibian, the leopard frog, two lepidosauria, a gecko and an iguana, and two mammals, a marsupial, the South American short-tailed gray opossum, and the house mouse. Electron microscopic analysis documented the presence of a distinct basal lamina in all species investigated. Subsequent stages of enamel biomineralization featured highly organized long and parallel enamel crystals in mammals, lepidosaurians, the frog, and the shark, while amorphous mineral deposits and/or randomly oriented crystals were observed in the guppy and the axolotl. In situ hybridization using a full-length mouse probe for amelogenin mRNA resulted in amelogenin specific signals in mouse, opossum, gecko, frog, axolotl, and shark. Using immunohistochemistry, amelogenin and tuftelin enamel proteins were detected in the enamel organ of many species investigated, but tuftelin epitopes were also found in other tissues. The anti-M179 antibody, however, did not react with the guppy and axolotl enameloid matrix. We conclude that basic features of vertebrate enamel/enameloid formation such as the presence of enamel proteins or the mineral deposition along the dentin-enamel junction were highly conserved in vertebrates. There were also differences in terms of enamel protein distribution and mineral organization between the vertebrates lineages. Our findings indicated a correlation between the presence of amelogenins and the presence of long and parallel hydroxyapatite crystals in tetrapods and shark.  相似文献   

20.
In this study, we report the distribution of orexin A (OXA), orexin B (OXB), and orexin receptor (OX2R) immunoreactive (ir) cells in the hypothalamus and gastrointestinal tract of Oncorhynchus mykiss fed diets with different dietary fatty acid compositions. Trout were fed five iso‐energetic experimental diets containing fish oil, or one of four different vegetable oils (olive, sunflower, linseed, and palm oils) as the added dietary lipid source for 12 weeks. OXA, OXB, and OX2R immunoreactive neurons and nervous fibers were identified in the lateral and ventro‐medial hypothalamus. OXA, OXB, and OX2R ir cells were found in the mucosa and glands of the stomach and in the mucosa of both the pyloric cecae and intestine. OX2R ir cells were localized in the mucosa layer of both the pyloric cecae and intestine. These immunohistochemical (IHC) results were confirmed via Western blotting. Antibodies against preproorexin (PPO) crossreacted with a band of ~16 kDa in the hypothalamus, stomach, pyloric cecae, and intestine. Antibodies against OX2R crossreacted with a band of ~38 kDa in the hypothalamus, pyloric cecae, and intestine. The presence and distribution of OXA, OXB, and OX2R ir cells in the hypothalamus and gastrointestinal tract did not appear to be affected by dietary oils. The presence of orexin system immunoreactive cells in the stomach, pyloric cecae, and intestine of rainbow trout, but not in the enteric nervous system, could suggest a possible role of these peptides as signaling of gastric emptying or endocrine modulation, implying a main local action played by orexins. Microsc. Res. Tech. 78:707–714, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号