首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Yasser Kiani 《热应力杂志》2013,36(12):1495-1518
Based on the uncoupled thermoelasticity assumptions, axisymmetric thermally induced vibrations of a circular plate made of functionally graded materials (FGMs) are analyzed. Each thermomechanical property of the circular plate is assumed to be functions of temperature and thickness coordinate. Solution of the transient one-dimensional heat conduction equation with the arbitrary type of time-dependent boundary conditions is carried out employing the central finite difference method combined with the Crank–Nicolson time marching scheme. Afterwards, with the establishment of the associated Hamilton's principle and the accountancy of the von Kármán type of geometrical non-linearity, the motion equations are obtained with the aid of the conventional multi-term Ritz method. The solution of highly coupled non-linear motion equations is obtained utilizing a hybrid iterative Newton–Raphson–Newmark scheme. After validating the developed computer code, some parametric studies are accomplished to show the influences of various involved parameters. It is shown that temperature dependency, geometrical non-linearity, plate thickness, power law index, and the type of thermal in-plane and out-of-plane mechanical boundary conditions, all affect the temporal evolution of plate characteristics.  相似文献   

2.
Present research deals with the geometrically nonlinear bending of a long cylindrical panel made of a through-the-thickness functionally graded material subjected to thermal load. A panel under the action of uniform temperature rise loading is considered. Formulation of the shell is based on the third-order shear deformation shell theory, where the first-order shear deformation and classical shell theory may be extracted as special cases. Thermomechanical properties of the shell are assumed to be temperature dependent and are estimated according to a power law function across the shell thickness. Also, it is assumed that shell is in contact with an elastic foundation which acts in tension as well as in compression. The nonlinear governing equations of the shell are obtained using the von Kármán type of geometrical nonlinearity. The obtained governing equations are solved for two cases, i.e., simply supported shells and clamped shells. The developed equations are solved using a two-step perturbation technique. Accurate closed-form expressions are provided to obtain the mid-span deflection of the shell as a function of temperature elevation. Numerical results are provided to analyze the effects of power law exponent, boundary conditions, temperature dependency, side to radius ratio, and side to thickness ratio.  相似文献   

3.
Y. Kiani 《热应力杂志》2018,41(7):866-882
Present research investigates the thermal postbuckling of sandwich plates containing a stiff core and two thin carbon nanotube reinforced composite (CNTRC) face sheets. Properties of the core, carbon nanotubes (CNTs) and polymeric matrix of the faces are assumed to be temperature-dependent. It is assumed that CNTs as reinforcements may be distributed according to a functionally graded pattern. Plate is formulated based on the first-order shear deformation theory and von Kármán type of geometrical nonlinearity. The governing equations are obtained by the energy method with the aid of the Conventional Ritz method. Shape functions of the Ritz method are estimated according to the Chebyshev polynomials. A set of nonlinear eigenvalue equations is achieved. The obtained equations are homogeneous, coupled, and nonlinear in terms of both displacements and temperature. A successive displacement control strategy is implemented to trace the thermal postbuckling equilibrium path of the plate. It is shown that, with increasing the volume fraction of CNT, critical buckling temperature of sandwich plate increases and postbuckling deflection decreases. Furthermore, through a functionally graded distribution of volume fraction of CNTs across the thickness, critical buckling temperature of the sandwich plate may be enhanced and thermal postbuckling deflection may be alleviated.  相似文献   

4.
In this article, the free vibration analysis of a functionally graded (FG) porous cylindrical microshell subjected to a thermal environment is investigated on the basis of the first-order shear deformation shells and the modified couple stress theories. The material properties are assumed to be temperature dependent and are graded in the thickness direction. The equations of motion and the related boundary conditions are derived using the principle of minimum potential energy and they are solved analytically. The model is validated by comparing the benchmark results with the obtained ones. The effects of material length scale parameter, temperature changes, volume fraction of the porosity, FG power index, axial and circumferential wave number, and length on the vibration behavior of the FG porous cylindrical microshell are studied. The results can have many applications such as in modeling of microrobots and biomedical microsystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号