首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We previously described a kinesin-dependent movement of particles in the flagella of Chlamydomonas reinhardtii called intraflagellar transport (IFT) (Kozminski, K.G., K.A. Johnson, P. Forscher, and J.L. Rosenbaum. 1993. Proc. Natl. Acad. Sci. USA. 90:5519-5523). When IFT is inhibited by inactivation of a kinesin, FLA10, in the temperature-sensitive mutant, fla10, existing flagella resorb and new flagella cannot be assembled. We report here that: (a) the IFT-associated FLA10 protein is a subunit of a heterotrimeric kinesin; (b) IFT particles are composed of 15 polypeptides comprising two large complexes; (c) the FLA10 kinesin-II and IFT particle polypeptides, in addition to being found in flagella, are highly concentrated around the flagellar basal bodies; and, (d) mutations affecting homologs of two of the IFT particle polypeptides in Caenorhabditis elegans result in defects in the sensory cilia located on the dendritic processes of sensory neurons. In the accompanying report by Pazour, G.J., C.G. Wilkerson, and G.B. Witman (1998. J. Cell Biol. 141:979-992), a Chlamydomonas mutant (fla14) is described in which only the retrograde transport of IFT particles is disrupted, resulting in assembly-defective flagella filled with an excess of IFT particles. This microtubule- dependent transport process, IFT, defined by mutants in both the anterograde (fla10) and retrograde (fla14) transport of isolable particles, is probably essential for the maintenance and assembly of all eukaryotic motile flagella and nonmotile sensory cilia.  相似文献   

2.
Phosphoinositide-specific phospholipases C (PI-PLCs) are ubiquitous enzymes that catalyse the hydrolysis of phosphoinositides to inositol phosphates and diacylglycerol (DAG). Whereas the eukaryotic PI-PLCs play a central role in most signal transduction cascades by producing two second messengers, inositol-1,4,5-trisphosphate and DAG, prokaryotic PI-PLCs are of interest because they act as virulence factors in some pathogenic bacteria. Bacterial PI-PLCs consist of a single domain of 30 to 35 kDa, while the much larger eukaryotic enzymes (85 to 150 kDa) are organized in several distinct domains. The catalytic domain of eukaryotic PI-PLCs is assembled from two highly conserved polypeptide stretches, called regions X and Y, that are separated by a divergent linker sequence. There is only marginal sequence similarity between the catalytic domain of eukaryotic and prokaryotic PI-PLCs. Recently the crystal structures of a bacterial and a eukaryotic PI-PLC have been determined, both in complexes with substrate analogues thus enabling a comparison of these enzymes in structural and mechanistic terms. Eukaryotic and prokaryotic PI-PLCs contain a distorted (beta alpha)8-barrel as a structural motif with a surprisingly large structural similarity for the first half of the (beta alpha)8-barrel and a much weaker similarity for the second half. The higher degree of structure conservation in the first half of the barrel correlates with the presence of all catalytic residues, in particular two catalytic histidine residues, in this portion of the enzyme. The second half contributes mainly to the features of the substrate binding pocket that result in the distinct substrate preferences exhibited by the prokaryotic and eukaryotic enzymes. A striking difference between the enzymes is the utilization of a catalytic calcium ion that electrostatically stabilizes the transition state in eukaryotic enzymes, whereas this role is filled by an analogously positioned arginine in bacterial PI-PLCs. The catalytic domains of all PI-PLCs may share not only a common fold but also a similar catalytic mechanism utilizing general base/acid catalysis. The conservation of the topology and parts of the active site suggests a divergent evolution from a common ancestral protein.  相似文献   

3.
Interspersed repeated DNA sequences are characteristic features of both prokaryotic and eukaryotic genomes. REP sequences are defined as conserved repetitive extragenic palindromic sequences and are found in Escherichia coli, Salmonella typhimurium and other closely related enteric bacteria. These REP sequences may participate in the folding of the bacterial chromosome. In this work we describe a unique class of 28 conserved complex REP clusters, about 100bp long, in which two inverted REPs are separated by a singular integration host factor (IHF) recognition sequence. We term these sequences RIP (for repetitive IHF-binding palindromic) elements and demonstrate that IHF binds to them specifically. It is estimated that there are about 70 RIP elements in E. coli. Our analysis shows that the RIP elements are evenly distributed around the bacterial chromosome. The possible function of the RIP element is discussed.  相似文献   

4.
Recent phylogenetic analyses reveal that many eukaryotic nuclear genes whose prokaryotic ancestry can be pinned down are of bacterial origin. Among them are genes whose products function exclusively in cytosolic metabolism. The results are surprising: we had come to believe that the eukaryotic nuclear genome shares a most recent common ancestor with archaeal genomes, thus most of its gene should be 'archaeal' (loosely speaking). Some genes of bacterial origin were expected as the result of transfer from mitochondria, of course, but these were thought to be relatively few, and limited to producing proteins reimported into mitochondria. Here, I suggest that the presence of many bacterial genes with many kinds of functions should not be a surprise. The operation of a gene transfer ratchet would inevitably result in the replacement of nuclear genes of early eukaryotes by genes from the bacteria taken by them as food.  相似文献   

5.
Polar flagellum-defective mutants (Pof- Laf-) have been isolated from a lateral flagella-defective mutant (Pof+ Laf-). Among these Pof- Laf- mutants, polar-filamentless mutants, which have the hook structure but not the filament, were identified by electron microscopy. Their hooks were covered with a sheath structure which is contiguous to the outer membrane. The filament proteins, flagellins, were shed into the culture medium of these mutants. These flagellins could be sedimented by high-speed centrifugation even after heat or low pH treatment whereas the depolymerized flagellin of the Pof+ strain was degraded by these treatments. After Triton X-100 treatment, most flagellin of the filamentless mutants could no longer be sedimented, and was degraded. We observed vesicle-like structures on the tips of the hooks and in the flagellin fraction sedimented by high speed centrifugation. These results suggest that flagellin of the filamentless mutants is not assembled into the tip of the hook, but is excreted together with a membrane structure which is probably the sheath of polar flagella.  相似文献   

6.
Proteins necessary for maintenance and function of eukaryotic flagella are synthesized in the cell body. Transport of the inner dynein arm subunit p28(IDA4) in Chlamydomonas flagella requires the activity of the kinesin KHP1(FLA10), a protein inactive at restrictive temperature in fla10, a temperature-dependent mutant of flagellar assembly. To identify other molecules involved in active transport of inner dynein arms within flagella we searched for polypeptides of the cytoplasmic matrix of flagella that fulfill two conditions: they bind to p28 and require the activity of KHP1 to be present in flagella. We found that the cytoplasmic matrix of flagella contains a previously unidentified "17S" complex of at least 13 polypeptides that in part is associated with p28. The 17S complex is present at permissive but not at restrictive temperature in fla10 flagella. It also turns over in the cytoplasmic matrix more frequently than dynein arms within the axoneme. This evidence suggests that the 17S complex transports precursors of inner dynein arms within flagella.  相似文献   

7.
The prokaryotic cell division protein FtsZ and eukaryotic tubulin have been shown to have very similar structures and are most likely homologs. The evolutionary transition from FtsZ to tubulin could provide a window into the transition from prokaryotic cells to eukaryotic cells.  相似文献   

8.
Oligonucleotides coding for linear epitopes of the fimbrial colonization factor antigen I (CFA/I) of enterotoxigenic Escherichia coli (ETEC) were cloned and expressed in a deleted form of the Salmonella muenchen flagellin fliC (H1-d) gene. Four synthetic oligonucleotide pairs coding for regions corresponding to amino acids 1 to 15 (region I), amino acids 11 to 25 (region II), amino acids 32 to 45 (region III) and amino acids 88 to 102 (region IV) were synthesized and cloned in the Salmonella flagellin-coding gene. All four hybrid flagellins were exported to the bacterial surface where they produced flagella, but only three constructs were fully motile. Sera recovered from mice immunized with intraperitoneal injections of purified flagella containing region II (FlaII) or region IV (FlaIV) showed high titres against dissociated solid-phase-bound CFA/I subunits. Hybrid flagellins containing region I (FlaI) or region III (FlaIII) elicited a weak immune response as measured in enzyme-linked immunosorbent assay (ELISA) with dissociated CFA/I subunits. None of the sera prepared with purified hybrid flagella were able to agglutinate or inhibit haemagglutination promoted by CFA/I-positive strains. Moreover, inhibition ELISA tests indicated that antisera directed against region I, II, III or IV cloned in flagellin were not able to recognize surface-exposed regions on the intact CFA/I fimbriae.  相似文献   

9.
This paper presents a simple and reasonable method for generating a phenomenological model of the internal mechanism of cilia. The model uses a relatively small number of parameters whose values can be obtained by fitting to ciliary beat shapes. Here, we use beat patterns observed in Paramecium. The forces that generate these beats are computed and fit to a simple functional form called the "engine." This engine is incorporated into a recently developed hydrodynamic model that accounts for interactions between neighboring cilia and between the cilia and the surface from which they emerge. The model results are compared to data on ciliary beat patterns of Paramecium obtained under conditions where the beats are two-dimensional. Many essential features of the motion, including several properties that are not built in explicitly, are shown to be captured. In particular, the model displays a realistic change in beat pattern and frequency in response to increased viscosity and to the presence of neighboring cilia in configurations such as rows of cilia and two-dimensional arrays of cilia. We found that when two adjacent model cilia start beating at different phases they become synchronized within several beat periods, as observed in experiments where two flagella are brought into close proximity. Furthermore, examination of various multiciliary configurations shows that an approximately antiplectic wave pattern evolves autonomously. This modeling evidence supports earlier conjectures that metachronism may occur, at least partially, as a self-organized phenomenon due to hydrodynamic interactions between neighboring cilia.  相似文献   

10.
11.
Pokeweed antiviral protein (PAP) has N-glycosidase activity towards both eukaryotic and prokaryotic ribosomes. This is in marked contrast with the A chains of type 2 ribosome inactivating proteins (RIPs) such as ricin and abrin, which inactivate only eukaryotic ribosomes. A recent report described spontaneous mutations in PAP that implicated specific amino acids to be involved in determining the activity of PAP towards prokaryotic ribosomes. As part of an ongoing study into RIP--ribosome interactions these mutations were specifically recreated in a PAP clone encoding the mature 262 amino acid PAP sequence. Mutants were tested for their N-glycosidase activity by analysing the integrity of eukaryotic and prokaryotic ribosomes after mutant protein expression. Mutations of F196Y and K211R, either individually or within the same clone, were active toward both classes of ribosome, indicating that these amino acid positions are not involved in differentiating ribosomal substrates. Mutation R68G led to a protein that appeared to be inactive towards prokaryotic ribosomes, but also very poorly active towards eukaryotic ribosomes. This mutation is currently under further investigation.  相似文献   

12.
Peptide deformylase catalyzes the removal of the N-terminal formyl group from nascent polypeptides during prokaryotic protein maturation and is essential for bacterial survival. Its absence from eukaryotic organisms makes it an attractive target for designing novel antibacterial agents. Peptidyl H-phosphonates were synthesized and shown to be competitive inhibitors of the deformylase.  相似文献   

13.
The presence of intervening sequences or introns in eukaryotic genes has been known for more than 20 years, and the mechanisms underlying RNA splicing have been studied in depth both genetically and biochemically. In recent years, however, an increasing number of bacterial genes have been introduced into higher eukaryotes as important tools for genetic studies. Their gene products are frequently used as an indirect measure for cell type-specific promoter activity, as, for example, in the case of chloramphenicol acetyl transferase (CAT assay) or beta-galactosidase. Here we show that RNA splicing of two prokaryotic genes encoding site-specific DNA recombinases occurs in eukaryotic cells. In one case, splicing is only observed after treatment of cells with the cytokine alpha interferon. We further demonstrate that mutating an intragenic donor splice site in a bacterial gene apparently activates a second, alternative splicing pathway. In conjunction with previous reports, our findings should also be regarded as a warning that splicing of bacterial genes in higher eukaryotes is a more common phenomenon than presently recognized, which may be difficult to overcome and may cause problems in the interpretation of experimental results.  相似文献   

14.
alpha-Defensins are antimicrobial peptides with 29-35 amino acid residues and cysteine-stabilized amphiphilic, triple-stranded beta-sheet structures. We used high-precision differential scanning microcalorimetry to investigate the effects of a human neutrophil alpha-defensin, HNP-2, on the phase behavior of model membranes mimicking bacterial and erythrocyte cell membranes. In the presence of this positively charged peptide, the phase behavior of liposomes containing negatively charged phosphatidylglycerol was markedly altered even at a high lipid-to-peptide molar ratio of 500:1. Addition of HNP-2 to liposomes mimicking bacterial membranes (mixtures of dipalmitoylphosphatidylglycerol and -ethanolamine) resulted in phase separation owing to some domains being peptide-poor and others peptide-rich. The latter are characterized by an increase of the main transition temperature, most likely arising from electric shielding of the phospholipid headgroups by the peptide. On the other hand, HNP-2 did not affect the phase behavior of membranes mimicking erythrocyte membranes (equimolar mixtures of dipalmitoylphosphatidylcholine and sphingomyelin) as well as the pure single components. This is in contrast to melittin, which significantly affected the phase behavior of choline phospholipids in accordance with its unspecific lytic activity. These results support the hypothesis of preferential interaction of defensins with negatively charged membrane cell surfaces, a common feature of bacterial cell membranes, and demonstrate that HNP-2 discriminates between model membrane systems mimicking prokaryotic and eukaryotic cell membranes.  相似文献   

15.
Two tandemly located flagellin genes, flaA and flaB, with 79% nucleotide sequence identity were identified in Aeromonas salmonicida A449. The fla genes are conserved in typical and atypical strains of A. salmonicida, and they display significant divergence at the nucleotide level from the fla genes of the motile species Aeromonas hydrophila and Aeromonas veronii biotype sobria. flaA and flaB encode unprocessed flagellins with predicted Mrs of 32,351 and 32,056, respectively. When cloned under the control of the Ptac promoter, flaB was highly expressed when induced in Escherichia coli DH5alpha, and the FlaB protein was detectable even in the uninduced state. In flaA clones containing intact upstream sequence, FlaA was barely detectable when uninduced and poorly expressed on induction. The A. salmonicida flagellins are antigenically cross-reactive with the A. hydrophila TF7 flagellin(s) and evolutionarily closely related to the flagellins of Pseudomonas aeruginosa and Vibrio anguillarum. Electron microscopy showed that A. salmonicida A449 expresses unsheathed polar flagella at an extremely low frequency under normal laboratory growth conditions, suggesting the presence of a full complement of genes whose products are required to make flagella; e.g., immediately downstream of flaA and flaB are open reading frames encoding FlaG and FlaH homologs.  相似文献   

16.
Using a PCR-based strategy and degenerate oligonucleotides, we isolated a Legionella pneumophila gene that showed high sequence similarity to members of the fliI gene family. An insertion mutation that disrupted the fliI open reading frame was recombined onto the L. pneumophila chromosome and analyzed for its effects on production of flagella and intracellular growth. The mutation resulted in loss of surface-localized flagellin protein but had no effect on the ability of the bacteria to grow within cultured cells. Therefore, in spite of the fact that some aflagellar mutations render L. pneumophila unable to grow within macrophages, the isolation of this defined mutant confirms that production of flagella is not required for intracellular growth.  相似文献   

17.
Hemoglobin homologs are being identified in an expanding number of unicellular prokaryotic and eukaryotic organisms. Many of these hemoglobins are twodomain proteins that possess a flavin-containing reductase in their C terminus. Determination of a function for these flavohemoglobins has been elusive. A Salmonella typhimurium strain harboring a deletion in the flavohemoglobin gene shows no difference in growth under oxidative stress conditions but displays an increased sensitivity to acidified nitrite and S-nitrosothiols, both of which produce nitric oxide. The effect is seen aerobically or anaerobically, indicating that oxygen is not required for flavohemoglobin function. These results suggest a role for the bacterial flavohemoglobins that is independent of oxygen metabolism and provide evidence for a bacterial route of protection from nitric oxide that is distinct from oxidative stress responses.  相似文献   

18.
The discovery of cyanobacterial phytochrome histidine kinases, together with the evidence that phytochromes from higher plants display protein kinase activity, bind ATP analogs, and possess C-terminal domains similar to bacterial histidine kinases, has fueled the controversial hypothesis that the eukaryotic phytochrome family of photoreceptors are light-regulated enzymes. Here we demonstrate that purified recombinant phytochromes from a higher plant and a green alga exhibit serine/threonine kinase activity similar to that of phytochrome isolated from dark grown seedlings. Phosphorylation of recombinant oat phytochrome is a light- and chromophore-regulated intramolecular process. Based on comparative protein sequence alignments and biochemical cross-talk experiments with the response regulator substrate of the cyanobacterial phytochrome Cph1, we propose that eukaryotic phytochromes are histidine kinase paralogs with serine/threonine specificity whose enzymatic activity diverged from that of a prokaryotic ancestor after duplication of the transmitter module.  相似文献   

19.
The spi gene of Streptococcus pneumoniae was cloned and its nucleotide sequence was determined. It encodes a protein of 204 amino acids that is homologous to bacterial signal peptidase I proteins. The S. pneumoniae protein contains all of the conserved amino acid sequence motifs previously identified in this enzyme from both prokaryotic and eukaryotic sources. Sequence comparisons revealed several additional motifs characteristic of the enzyme. The cloned S. pneumoniae gene complemented an Escherichia coli mutant defective in its leader peptidase gene. Expression of the spi gene in S. pneumoniae appeared to be essential for viability. The cloned gene was shown to produce a polypeptide of approximately 20 kDa. Overproduction of the S. pneumoniae spi gene in an E. coli expression system gave a native protein product, soluble in the presence of a non-ionic detergent, which should be amenable to structural determination.  相似文献   

20.
Prokaryotic translational release factors, RF1 and RF2, catalyze polypeptide release at UAG/UAA and UGA/UAA stop codons, respectively. In this study, we isolated a bacterial RF2 mutant (RF2*) containing an E167K substitution that restored the growth of a temperature-sensitive RF1 strain of Escherichia coli and the viability of a chromosomal RF1/RF2 double knockout. In both in vivo and in vitro polypeptide termination assays, RF2* catalyzed UAG/UAA termination, as does RF1, as well as UGA termination, showing that RF2* acquired omnipotent release activity. This result suggests that the E167K mutation abolished the putative third-base discriminator function of RF2. These findings are interpreted as indicating that prokaryotic and eukaryotic release factors share the same anticodon moiety and that only one omnipotent release factor is sufficient for bacterial growth, similar to the eukaryotic single omnipotent factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号