首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Permeation and separation characteristics for aqueous alcoholic solutions such as methanol/water, ethanol/water and 1-propanol/water were studied using a poly(dimethyl siloxane) membrane by pervaporation and evapomeation. Poly(dimethyl siloxane) membrane preferentially permeated alcohol from aqueous alcoholic solutions in both methods. The concentration of alcohol in the permeate by evapomeation was higher than that by pervaporation. However, the permeation rate for the former method was smaller than that for the latter method. In evapomeation with a temperature difference between the feed solution and the membrane surroundings, when the temperature of the membrane surroundings was kept constant and the temperature of the feed solution was raised, both the permeation rate and the permselectivity for ethanol increased with increasing temperature of the feed solution. On the other hand, as the temperature of the feed solution was kept constant and the temperature of the membrane surroundings was changed, the permeation rate decreased, but the permselectivity for ethanol increased remarkably with dropping temperature in the membrane surrounding. Under permeation conditions of a feed solution of 40°C and a membrane surrounding temperature of ?30°C in evapomeation, an aqueous solution of 10 wt % ethanol in the feed was concentrated to about 90 wt % in the permeate. The permselectivity for alcohol was in the order of methanol <ethanol <1-propanol. The above permeation and separation characteristics are discussed from the viewpoint of the physicochemical properties of the poly(dimethyl siloxane) membrane and the permeating molecules.  相似文献   

2.
In this study, itaconic acid (IA) was grafted onto poly(vinyl alcohol) (PVA) with cerium(IV) ammonium nitrate as an initiator at 45°C. The grafted PVA was characterized with Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. IA‐grafted PVA membranes were prepared with a casting method, and the permeation and separation characteristics of acetic acid/water mixtures were investigated with pervaporation (PV), evapomeation (EV) and temperature‐difference evapomeation (TDEV) methods. The effects of the feed composition, operating temperature, and temperature of the membrane surroundings on the permeation rate and separation factor for the acetic acid/water mixtures were studied. The permeation rates in EV were lower than those in PV, whereas the separation factors were higher. With the TDEV method, the permeation rates decreased and the separation factors increased as the temperature of the membrane surroundings decreased. The prepared membranes were also tested in PV, EV, and TDEV to separate the various compositions of the acetic acid/water mixtures (20–90 wt % acetic acid) at 40°C. The highest separation factor, 686, was obtained in TDEV with a 90 wt % acetic acid concentration in the feed. The activation energies of permeation in PV and EV were calculated to be 8.5 and 10.2 kcal/mol, respectively, for a 20 wt % acetic acid solution. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2322–2333, 2004  相似文献   

3.
分离有机物水溶液的渗透汽化与汽化渗透膜   总被引:6,自引:0,他引:6  
该文基于45篇最新文献,较详细地论述了渗透汽化膜与汽化渗透膜的有机物水溶液分离性能及其影响因素,包括高聚物特征,料液浓度,温度,古游侧压力,膜厚度和操作时间,指出用多数高聚物膜进行渗透汽化操作可以有效地分离多数有机醇,酮,酸,酯,酰胺以及二E烷,乙腈,吡啶,二甲亚砜和四氢呋喃水溶液;而以壳聚糖及其衍生物膜进行汽化渗透操作则具有更高的分离系数。该文还简要介绍了渗透汽化膜的新应用。为渗透汽化与汽化渗透  相似文献   

4.
Permeation and separation characteristics for the feed vapours from aqueous alcoholic solutions through chitosan derivative membranes such as chitosan acetate (GA-ChitoA), chitosan (GA-Chito), and carboxymethyl chitosan acetate (GA-CM-ChitoA) membrane crosslinked with glutaraldehyde were investigated by evapomeation. The GA-Chito and GA-CM-ChitoA membranes prepared from casting solutions containing an optimum amount of glutaraldehyde showed a high permeation rate and high water permselectivity for an azeotropic composition in an aqueous ethanol solution. The permselectivity for water through the GA-CM-ChitoA membrane in evapomeation was in the order of aqueous solutions of methanol < ethanol < 1-propanol. The effect of the chemical and physical structure of these hydrophilic membranes on the permeation and separation characteristics is discussed.  相似文献   

5.
《分离科学与技术》2012,47(6):1193-1209
Abstract

Separation of acetic acid‐water mixtures by using evapomeation (EV) method were carried out over the full range of compositions at temperatures varying from 30 to 55°C using poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) (75/25) (v/v) alloy membranes. PVA/PAA membranes gave separation factors of 110–5711 and permeation rates of 2.3×10?4–1.53×10?1 kg/m2h, depending on the operation temperature and feed mixture composition. The temperature dependence of the permeation in EV was expressed by the Arrhenius type expression and the activation energy was calculated as 9.15 kcal/mol. More efficient EV technique, which is called temperature difference evapomeation method (TDEV) was also applied to PVA/PAA membranes to separate acetic acid‐water mixtures; high permeation rates (1.7×10?3–3.0×10?1 kg/m2h) and separation factors (1335–8924) were obtained for each of the studied feed compositions. Azeotropic mixture of acetic acid and water was also separated by TDEV method with a separation factor of 297 and permeation rate of 1.50×10?1 kg/m2h.  相似文献   

6.
The characteristics of permeation and separation for aqueous solutions of methanol and ethanol through a poly[bis(2,2,2-trifluoroethoxy)phosphazene] (PBTFP) membrane were studied by pervaporation and evapomeation. In pervaporation technique, methanol was preferentially permeated in all of the feed solution compositions and ethanol was permeated in lower ethanol concentrations of the feed solution. Water was predominantly permeated from the feed solutions with higher ethanol concentration. In evapomeation technique, water was selectively permeated in both all of the feed vapor compositions for aqueous methanol and ethanol solutions. These different permselectivities depended on the feed composition and the membrane permeation technique and could be discussed by a difference in the mechanisms of permeation and separation. It was found that the permeation rate was influenced remarkably by the degree of swelling of the PBTFP membrane and the permselectivity for water of aqueous alcoholic solutions was enhanced by an increasing degree of swelling of the membrane. When the degree of swelling of the membrane with rising permeation temperature was small, both the permeation rate and permselectivity for alcohol in pervaporation and evapomeation increased with the permeation temperature. The above results are discussed considering the PBTFP membrane structure in evapomeation and pervaporation.  相似文献   

7.
The separation of aqueous alcohol mixtures was carried out by use of a series of novel aromatic polyamide membranes. The aromatic polyamides were prepared by the direct polycondensation of 2,2′‐dimethyl‐4,4′‐bis(aminophenoxyl)biphenyl (DBAPB) with various aromatic diacids, such as terephthalic acid (TPAc), 5‐tert‐butylisophthalic acid (TBPAc), and 4,4′‐hexafluoroisopropylidenedibenzoic acid (FDAc). The pervaporation and evapomeation performance of these novel aromatic polyamide membranes for dehydrating aqueous alcohol solution were investigated. The solubility of ethanol in the aromatic polyamide membranes is higher than that of water, but the diffusivity of water through the membrane is higher than that of ethanol. The effect of diffusion selectivity on the membrane separation performances plays an important role in the evapomeation process. Compared with pervaporation, evapomeation effectively increases the permselectivity of water. Moreover, the effect of aromatic diacids on the polymer chain packing density, pervaporation, and evapomeation performance were investigated. It was found that the permeation rate could be increased by introduction of a bulky group into the polymer backbone. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2688–2697, 2003  相似文献   

8.
《分离科学与技术》2012,47(12):1599-1617
Abstract

Copolymer membranes prepared by bulk copolymerization of polyethylene glycol dimethacrylates of three different degrees of polymerization as macromonomer and benzyl methacrylate as comonomer were used for the separation of aqueous ethanol solutions in both pervaporation and evapomeation. The copolymer membranes preferentially permeated water from an aqueous ethanol solution in evapomeation. In pervaporation, ethanol was predominantly permeated from an aqueous ethanol solution through the copolymer membranes containing a long polyethylene glycol (PEG) chain above about 20 wt% PEG content in a copolymer. This result was attributed to a remarkable swelling of the copolymer membrane containing a long PEG chain by the aqueous ethanol solution in pervaporation. In evapomeation, both the separation factors and the permeation rates through these membranes are not much affected by the ethanol concentration in the feed vapor. In pervaporation, they were significantly dependent on the ethanol concentration in the feed solution. The above results are discussed from the viewpoint of the physical structure of the membrane in evapomeation and pervaporation.  相似文献   

9.
An organic/inorganic hybrid nanocomposite membrane, poly(vinyl alcohol)/clay (PVAC), was prepared. The morphology of PVAC nanocomposite membranes were characterized using transmission electron microscopy (TEM), X‐ray diffraction (XRD), and atomic force microscopy (AFM). The crystallinity and surface roughness increases with an increasing clay content in the PVAC nanocomposite membrane. Compared with the pure poly(vinyl alcohol) (PVA) membrane, the hybrid nanocomposite membrane (PVAC) shows an improvement in the thermal stability and the prevention of the water‐soluble property. The oxygen permeability and the water‐vapor permeation rate decreases with an increasing clay content (1–3 wt %) in the PVAC nanocomposite membranes. In addition, the effects of the clay content on the vapor‐permeation performance of an aqueous ethanol solution through the PVAC nanocomposite membranes was also investigated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3632–3638, 2003  相似文献   

10.
通过在季铵化聚乙烯醇(QPVA)和聚二甲基二烯丙基氯化铵(PDADMAC)混合聚合物水溶液中添加正硅酸乙酯(TEOS)进行溶胶-凝胶反应,制备得到了不同配比的溶胶-凝胶铸膜液,并将各铸膜液在模具中干燥得到杂化膜,随后将杂化膜在戊二醛/丙酮溶液中交联得到尺寸稳定的杂化阴离子交换膜。考察了季铵化聚乙烯醇和聚二甲基二烯丙基氯化铵铸膜液的质量比对杂化膜稳定性的影响。主要分析了4种尺寸稳定阴离子交换膜的外观形貌、红外光谱、微观形貌、热稳定性、含水/甲醇率和膜的离子交换容量。结果表明,QPVA/0.25PDADMAC/0.1TEOS碱性杂化膜在甲醇中尺寸稳定,微观结构致密,在65~140℃时热稳定性优良,离子交换容量可达到1.091 41 mmol/g。具有在中低温型碱性直接甲醇燃料电池中使用的潜力。  相似文献   

11.
《分离科学与技术》2012,47(1):59-71
Abstract

Carbon membranes for gas separation were prepared from the polymer blend consisting of poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) and polyvinylpyrrolidone (PVP) as the thermally stable and labile polymer, respectively. The PPO/PVP derived carbon membranes with lower PVP concentrations than 0.6 wt% showed decreased gas permeances and increased permselectivity due to decrease in the pore properties (pore volume and surface area). Meanwhile, gas permeance increased for the carbon membranes prepared with higher PVP concentrations than 0.6 wt% due to the enhanced diffusional pathways for the gas transport through carbon membranes especially in the domain of the thermally labile polymer. It is considered that the introduction of the thermally labile polymer leads to control the pore structure through the permeation results for the carbon membrane derived from the polymer blend.  相似文献   

12.
Nanofiltration membranes based on poly(vinyl alcohol) (PVA) and ionic polymers, such as sodium alginate (SA) and chitosan, were prepared by casting the respective polymer solutions. The membranes prepared from PVA or PVA–ionic polymer blend were crosslinked in a isopropanol solution using glutaraldehyde as a crosslinking agent. The membranes were characterized with Fourier transform infrared spectroscopy and X‐ray diffractometry and swelling test. The membranes crosslinked through the acetal linkage formation between the  OH groups of PVA and the ionomer and glutaraldehyde appeared to be semicrystalline. To study the permeation properties, the membranes were tested with various feed solutions [sodium sulfate, sodium chloride, poly(ethylene glycol) with 600 g/mol of molecular weight (PEG 600), and isopropyl alcohol]. For example, the permeance and the solute rejection of the 1000 ppm sodium sulfate at 600 psi of upstream pressure through the PVA membrane were 0.55 m3/m2 day and over 99%, respectively. The effects of the ionomers on the permeation properties of the PVA membranes were studied using the PVA–SA and PVA–chitosan blend membranes. The addition of small amount of ionic polymers (5 wt %) made the PVA membranes more effective for the organic solute rejection without decrease in their fluxes. The rejection ratios of the PEG 600 and isopropanol were increased substantially. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1755–1762, 1999  相似文献   

13.
Clear blends of chitosan with poly(N‐vinyl‐2‐pyrrolidone) (PVP) made from aqueous solutions appear to be miscible from visual appearance. Infrared (IR) spectra used to investigate the carbonyl—hydroxyl hydrogen bonding in the blends indicated compatibility of two polymers on a molecular level. The IR spectra were also used to determine the interaction change accessing with increasing temperature and indicated that a significant conformational change occurred. On the other hand, the blend membranes were evaluated for separation of methanol from methyl tert‐butyl ether. The influences of the membrane and the feed compositions were investigated. Methanol preferentially permeates through all the tested membranes, and the partial flux of methanol significantly increase with the poly(N‐vinyl‐2‐pyrrolidone) content increasing. The temperature dependence of pervaporation performance indicated that a significant conformational change occurred with increasing temperature. Combined with the IR results, the pervaporation properties are in agreement with characteristics of interaction between chain–chain within the blend membranes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1452–1458, 1999  相似文献   

14.
Poly(vinyl alcohol) was modified by UV radiation with dimethyl amino ethyl methacrylate (DMAEMA) monomer to get poly(dimethyl amino ethyl methacrylate) modified poly(vinyl alcohol) (PVADMAEMA) membrane. The PVADMAEMA membranes were characterized by Fourier transform infrared spectroscopy. The tensile strength and elongation of PVADMAEMA membranes were measured by Universal Testing Machine. The results of X‐ray diffraction (XRD) and differential scanning calorimetry (DSC) showed that (1) the crystalline area in PVADMAEMA decreased with increasing the content of poly(dimethyl amino ethyl methacrylate) in the membrane. (2) Only one glass transition temperature (Tg) was found for the various PVADMAEMA membranes. It means that poly(dimethyl amino ethyl methacrylate) and PVA are compatible in PVADMAEMA membrane. (3)The Tg of the membrane is reduced with increasing the content of poly(dimethyl amino ethyl methacrylate) in the membrane. The water content on the PVADMAEMA membranes was determined. It was found that the water content on the PVADMAEMA membrane increased with increasing the content of poly(dimethyl amino ethyl methacrylate). The changes of properties enhanced the permeability of 5‐Fluorouracil (5‐Fu) through the PVADMAEMA membranes. A linear relationship between the permeability and the weight percent of poly(dimethyl amino ethyl methacrylate) in the PVADMAEMA membrane is found. It is expressed as P (cm/s) = (9.6 ± 0.4) × 10?5 + (8.8 ± 0.6) × 10?5 W x , where P is the permeability of 5‐Fu through the membrane and Wx is the weight percent of poly(dimethyl amino ethyl methacrylate) in the PVADMAEMA membrane. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
The separation of acetic acid–water mixtures was carried by using pervaporation (PV) and temperature difference evapomeation (TDEV) methods. For the separation process 4‐vinyl pyridine was grafted on poly(vinyl alcohol). Membranes were prepared from the graft‐copolymer by casting method and crosslinked by heat treatment. The effect of feed composition on the separation characteristics was studied and the performances of the separation methods were compared. Permeation rates obtained in PV were found to be high, whereas separation factors were high in TDEV method. Membranes gave permeation rates of 0.1–3.0 kg/(m2 h) and separation factors of 2.0–61.0, depending on the composition of the feed mixture and the method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2030–2039, 2006  相似文献   

16.
The separation of acetic acid–water mixtures was carried out using pervaporation (PV) and temperature difference evapomeation (TDEV) methods. For the separation process, 4‐vinyl pyridine was grafted on poly(vinyl alcohol). Membranes were prepared from the graft‐copolymer by casting method and crosslinked by heat treatment. The effects of feed composition on the separation characteristics were studied and the performances of the separation methods were compared. Permeation rates were found to be high in PV whereas separation factors were high in TDEV method. Membranes gave permeation rates of 0.1–3.0 kg/m2h and separation factors of 2.0–61.0 depending on the composition of the feed mixture and the method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1385–1394, 2006  相似文献   

17.
Pervaporation membranes were fabricated by blending different amount of zeolite NaA or NaX with three types of poly(amidesulfonamide) (PASA). The zeolite‐filled membranes were characterized by IR spectroscopy, SEM, sorption measurements, and wide‐angle X‐ray diffraction. By adding the proper amount of NaA into the polymer casting solutions, the resultant zeolite‐filled membranes exhibited improvement in both selectivity and permeability in the separation of 10% aqueous solutions of ethanol and propan‐1‐ol, as compared with the zeolite free membrane. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1323–1329, 2001  相似文献   

18.
以聚乙烯醇(PVA)与聚乙二醇(PEG)共混,并与正硅酸乙酯(TEOS)进行交联反应制备杂化膜。FTIR证实杂化溶胶液发生交联反应形成共价键Si—O—C,WXRD观察表明加入TEOS改变了膜结晶度,加入PEG提高了PVA膜对乙醇/水溶液的渗透通量,但分离因子下降,随着TEOS的加入,膜的分离因子提高。在TEOS质量分数为10%时,杂化膜的分离因子达到最大。提高退火温度可以提高膜的分离因子,但通量下降。在100℃下退火12 h的杂化膜对乙醇质量分数为85%的乙醇/水溶液的分离性能最佳。  相似文献   

19.
The permeation characteristics of nylon-12-cellulose acetate polymer blend membranes in the separation of polymers, poly(vinyl alcohols), from their aqueous solutions were investigated under various conditions. The permeation characteristics were influenced markedly by the ratio of nylon-12-cellulose acetate, the feed concentration, the operating pressure and temperature. It was found that the changes of polymer ratio and the concentration of blended polymer were related to the change of microporous structure of the resulting membranes. When the cellulose acetate content was higher a significant compaction of the membrane occurred under pressure. It was found that there was a concentration polarization of poly(vinyl alcohol) molecules on the membrane surface, whose thickness increased with increase in molecular weight of poly(vinyl alcohol) and in feed concentration. The bursting strength of the polymer blend membranes swollen with water increased considerably as the cellulose acetate content in the blended polymer increased.  相似文献   

20.
制备了以聚乙烯醇(PVA)、磷酸酯化聚乙烯醇(PPVA)和活性分离层的PVA/PAN、PPVA/PAN渗透汽化复合膜并用于乙醇-水恒沸混合物的分离。考察了热处理条件对复合膜分离性能及吸附性能的影响。结果表明,复合膜的分离性能主要是由热处理温度决定的,并且,PPVA/PAN复合膜比PVA/PAN复合膜具有更好的分离性能。确定了最佳的热处理条件,对于PVA/PAN复合膜:在403K下,热处理时间不小于4h,对于PPAV/PAN复合膜:在423K下,热处理时间不小于2h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号