首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Xu GR  Zhang WT  Li GB 《Water research》2005,39(20):5175-5185
Chemically enhanced primary treatment (CEPT) in municipal wastewater treatment is particularly suitable for rapidly growing cities. The focus on CEPT process now might be the cost of chemicals and disposal of chemical sludge. In this study, the potential application of adsorbent made from CEPT sludge in CEPT wastewater treatment was investigated in various conditions, such as the adsorbent dosage, pH, and dosing modes of ferric chloride and adsorbent. It was found that sludge-derived adsorbent was a good way of sludge disposal while enhanced pollutants removal rate and reduced the fresh ferric chloride dosage. With the use of 10.0 mg L−1 of ferric chloride and 0.6 g L−1 of the adsorbent at the first stage simultaneously, the enhanced removal efficiencies of turbidity, UV254, COD, TP were 83.3%, 52.3%, 48.8% and 89.0%, respectively. The experiments showed that ferric chloride dose was reduced about 50%. The pH played a significant role in coagulation and adsorption process.  相似文献   

2.
Defluoridation of wastewaters using waste carbon slurry   总被引:19,自引:0,他引:19  
Gupta VK  Ali I  Saini VK 《Water research》2007,41(15):3307-3316
Adsorption of fluoride on waste carbon slurry was investigated. Waste carbon slurry was obtained from fuel oil based generators of a fertilizer industry. The work involves batch experiments to investigate the effects of contact time, pH, temperature and adsorbent dose on the extent of adsorption by carbon slurry. The contact time and pH for maximum fluoride uptake were found 1h and 7.58, respectively. Maximum adsorption capacity (4.861 mg g(-1)) of fluoride on carbon slurry was observed at 15.00 mg L(-1) initial fluoride concentration using 1.0 g L(-1) adsorbent dose. Among four applied models, the experimental isotherm data were found to follow Langmuir equation more closely. Thermodynamically, adsorption was found endothermic with values 7.348 kJ mol(-1), -25.410 kJ mol(-1) and 0.109 kJ mol(-1)K(-1) for enthalpy, free energy and entropy, respectively showing the feasibility of adsorption process. From kinetic analysis, the adsorption was found to follow second-order mechanism with rate constant 49.637 gm g(-1)min(-1). The rate-controlling step of the adsorption was found pore diffusion controlled. In order to investigate the potential of this adsorbent on industrial scale, column and desorption experiments were carried out. The breakthrough capacity of column was calculated 4.155 mg g(-1) with at a flow rate of 1.5 mL min(-1). The proposed adsorbent has been used to remove fluoride from groundwater and wastewater. Desorption has been achieved under alkaline conditions (pH 11.6) from exhausted carbon slurry. The performance of carbon slurry was compared with many other reported adsorbent for fluoride removal and it was observed that proposed adsorbent is effective in terms of performance and cost especially.  相似文献   

3.
The 2-mercaptobenzimidazole loaded natural clay was prepared for the removal of Hg(II) from aqueous media. Adsorption of the metal ions from aqueous solution as a function of solution concentration, agitation time, pH, temperature, ionic strength, particle size of the adsorbent and adsorbent dose was studied. The adsorption process follows a pseudo-second-order kinetics. The rate constants as a function of initial concentration and temperature were given. The adsorption of Hg(II) increased with increasing pH and reached a plateau value in the pH range 4.0-8.0. The removal of Hg(II) was found to be >99% at an initial concentration of 50 mg/l. Mercury(II) uptake was found to increase with ionic strength and temperature. Further, the adsorption of Hg(II) increased with increasing adsorbent dose and decrease with adsorbent particle size. Sorption data analysis was carried out using Langmuir and modified Langmuir isotherms for the uptake of metal ion in an initial concentration range of 50-1,000 mg/l. The significance of the two linear relationships obtained by plotting the data according to the conventional Langmuir equation is discussed in terms of the binding energies of the two population sites involved which have a widely differing affinity for Hg(II) ions. Thermodynamic parameters such as changes of free energy, enthalpy, and entropy were calculated to predict the nature of adsorption. It was found that the values of isosteric heat of adsorption were varied with surface loading. The chlor-alkali industry wastewater samples were treated by MBI-clay to demonstrate its efficiency in removing Hg(II) from wastewater.  相似文献   

4.
S. Krner  J. E. Vermaat 《Water research》1998,32(12):3651-3661
To arrive at detailed nutrient balances for duckweed-covered wastewater treatment systems, five laboratory-scale experiments were carried out in shallow (3.3 cm), 1 l batch systems to assess separately the contributions of duckweed itself, attached and suspended bacteria as well as algae to N- and P-removal in domestic wastewater. Depending on the initial concentrations, our duckweed-covered systems removed 120–590 mg N m−2 d−1 (73–97% of the initial Kjeldahl-nitrogen) and 14–74 mg P m−2 d−1 (63–99% of the initial total phosphorus) in 3 days. Duckweed (Lemna gibba L.) itself was directly responsible for 30–47% of the total N-loss by uptake of ammonium and, probably dependent on the initial P-concentrations, for up to 52% of the total P-loss. The indirect contribution of duckweed to the total nutrient removal was also considerable and included the uptake (and adsorption) of ammonium and ortho-phosphate by algae and bacteria in the attached biofilm and the removal of N through nitrification/denitrification by bacteria attached to the duckweed. Together these accounted for 35–46 and 31–71% of the total N- and P-loss, respectively. Therefore, approximately of the total N- and P-loss could be attributed to the duckweed mat. The remaining quarter is due to non-duckweed related components: uptake and nitrification/denitrification by algae and bacteria attached to the walls and the sediment of the system (including sedimentation). Other processes, like NH3-volatilisation, N-fixation and nutrient uptake as well as nitrification/denitrification by suspended microorganisms did not influence the N- and P-balance of our systems, but could become important with increasing water depths and retention times.  相似文献   

5.
Palma G  Freer J  Baeza J 《Water research》2003,37(20):4974-4980
Pinus radiata bark and tannins, chemically modified with an acidified formaldehyde solution were used for removing metal ions from aqueous solutions and copper mine acidic residual waters. The adsorption ability to different metal ions [V(V), Re(VII), Mo(VI), Ge(IV), As(V), Cd(II), Hg(II), Al(III), Pb(II), Fe(II), Fe(III), Cu(II)] and the factors affecting their removal from solutions were investigated. Effect of pH on the adsorption, desorption, maximum adsorption capacity of the adsorbents, and selectivity experiments with metal ion solutions and waste waters from copper mine were carried out. The adsorbents considerably varied in the adsorption ability to each metal ion. The adsorption depends largely upon the pH of the solution. Modified tannins showed lower adsorption values than the modified bark. For the same adsorbent, the maximum capacity at pH 3 for the different ions were very different, ranging for modified bark from 6.8 meqg−1 for V to 0.93 meqg−1 for Hg. Waste waters were extracted with modified bark as adsorbent and at pH 2. The ions Cu(II) (35.2 mgL−1), Fe(III) (198 mgL−1), Al(III) (83.5 mgL−1) and Cd(II) (0.15 mgL−1) were removed in 15.6%, 46.9%, 83.7% and 3.3%, respectively, by using 1 g of adsorbent/10 mL of waste water. In general, a continuous adsorption on a packed column gave higher adsorbed values than those observed in the batchwise experiment.  相似文献   

6.
Water treatment residual solids were examined in batch adsorption and column adsorption experiments using a groundwater from Halifax Regional Municipality that had an average arsenic concentration of 43 μg/L (±4.2 μg/L) and a pH of 8.1. The residual solids studied in this paper were from five water treatment plants, four surface water treatment plants that utilized either alum, ferric, or lime in their treatment systems, and one iron removal plant. In batch adsorption experiments, iron-based residual solids and lime-based residual solids pre-formed similarly to GFH, a commercially-available adsorbent, while alum-based residual solids performed poorly. Langmuir isotherm modeling showed that ferric residuals had the highest adsorptive capacity for arsenic (Qmax = 2230 mg/kg and 42,910 mg/kg), followed by GFH (Qmax = 640 mg/kg), lime (Qmax = 160 mg/kg) and alum (Qmax = <1 mg/kg and 3 mg/kg). Similarly, the maximum arsenic removal was >93% for the ferric and lime residuals and GFH, while the maximum arsenic removal was <49% for the alum residuals under the same conditions. In a column adsorption experiment, ferric residual solids achieved arsenic removal of >26,000 bed volumes before breakthrough past 10 μg As/L, whereas the effluent arsenic concentration from the GFH column was under the method detection limit at 28,000 bed volumes. Overall, ferric and lime water treatment residuals were promising adsorbents for arsenic adsorption from the groundwater, and alum water treatment residuals did not achieve high levels of arsenic adsorption.  相似文献   

7.
Defluoridation from aqueous solutions by granular ferric hydroxide (GFH)   总被引:1,自引:0,他引:1  
This research was undertaken to evaluate the feasibility of granular ferric hydroxide (GFH) for fluoride removal from aqueous solutions. Batch experiments were performed to study the influence of various experimental parameters such as contact time (1 min-24 h), initial fluoride concentration (1-100 mg L−1), temperature (10 and 25 °C), pH (3-12) and the presence of competing anions on the adsorption of fluoride on GFH. Kinetic data revealed that the uptake rate of fluoride was rapid in the beginning and 95% adsorption was completed within 10 min and equilibrium was achieved within 60 min. The sorption process was well explained with pseudo-first-order and pore diffusion models. The maximum adsorption capacity of GFH for fluoride removal was 7.0 mg g−1. The adsorption was found to be an endothermic process and data conform to Langmuir model. The optimum fluoride removal was observed between pH ranges of 4-8. The fluoride adsorption was decreased in the presence of phosphate followed by carbonate and sulphate. Results from this study demonstrated potential utility of GFH that could be developed into a viable technology for fluoride removal from drinking water.  相似文献   

8.
Wei YT  Zheng YM  Chen JP 《Water research》2011,45(6):2290-2296
Methylated arsenic in groundwater has caused a series of health problems to human beings. A N-methylglucamine modified chitosan polymeric adsorbent was successfully developed for efficient adsorption of methylated arsenic from water solution. Adsorption behaviors of two common methylated arsenic species, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), onto the adsorbent were investigated in this paper. The surface modification increased the adsorption capabilities for the arsenic. The uptake of MMA was higher than that of DMA throughout all pH values. The maximum adsorption capacities were 15.4 mg/g for MMA and 7.1 mg/g for DMA, exhibiting competitive advantages with other reported materials. The affinity of these arsenic species for the adsorbent followed a pattern of MMA > DMA. The adsorption equilibrium was achieved within 20 h. The uptake of MMA and DMA was dependent upon the concentration of background electrolytes, indicating the formation of outer-sphere complexes of both organoarsenic species with the adsorbent during the adsorption. The existence of natural organic matter and competitive anions cause decrease in the uptake of both arsenic species. Furthermore, the simultaneous uptake of organic contaminants such as humic acid was observed. The spectroscopic analysis demonstrated the strong attachment of both organic arsenic species onto the amine functional group of the adsorbent.  相似文献   

9.
N. Patriniche  L. Negrei  D. Preda 《Thin》1994,20(1-4):301-308
The paper analyzes the concept of evaluation by calculus of the stability limit state for members subjected to combined bending and axial compression.

The calculus procedure stipulated in Eurocode 3, Design of Steel Structures, 19901 is presented for the case in which flexural-torsional buckling is a potential failure mode (compression and bending about the major axis of the section).

The verification function, stipulated in the Eurocode is analyzed by comparison with some experimental results.

The analysis is one of the Steel Structures Department's (Civil Engineering Institute, Bucharest) concerns regarding the improvement of Romanian Code STAS 10108/0–78 ‘Metal Structures’.  相似文献   


10.
The efficiency of the adsorption for fluoride by sludge from the treatment of starch industry wastewater was investigated. Batch experiments were conducted in order to determine the parameters that affect the adsorption process. The activation for waste sludge and specific surface area and porosity effects in enhancing the pyrolysis conditions were determined. The adsorption parameters of initial fluoride concentration, pH and adsorbent dosage were investigated with carbonaceous material. As a result of pyrolysis of samples treated with ZnCl2 1196 m2/g, the specific surface area was reached. Correlation coefficient of 0.99 and 12.75 mg/g adsorption capacity and adsorption isotherm model were revealed as convenient. Experimental results show that the adsorption of fluoride waste sludge will be effective in many ways in which the adsorbent is applied.  相似文献   

11.
Three activated carbons and two chars made from low rank coal were evaluated in terms of their ability to remove the organic compound 4-nitrophenol (4-NP) and natural organic matter (NOM) from aqueous systems. The adsorption equilibrium capacities of all adsorbents for 4-NP correlated with the micropore area of the adsorbents. Adsorption rates showed improved removal with decreasing particle size and higher carbon mass loadings. A pseudo first order model was used to fit the kinetic data, with a correlation coefficient of 0.995–0.999 for all systems.

The adsorption capacity for NOM, as measured by UV-absorbing DOC, correlated well with the pore volume and pore surface areas for pores with diameters in the range 2.7–21 nm. The trend in the adsorption capacities and removal rates of the adsorbents for NOM provided evidence that the pore size distribution is one of the most important physical characteristics of activated carbon for the adsorption of NOM.

The performance of activated low rank coal based materials was comparable to a high quality coconut-based commercial carbon in batch systems. Although the non-activated char adsorbents gave poor performance, they have potential for use in applications where poor performance can be outweighed by lower cost.  相似文献   


12.
C. Raji  T. S. Anirudhan 《Water research》1998,32(12):3772-3780
Batch sorption studies have been carried out to determine the effect of adsorbent dose, initial sorbate concentration and pH on the adsorption of Cr(VI) on polymer-grafted sawdust. The process was found to be pH, temperature and concentration dependent. An empirical relationship has been obtained to predict the percentage Cr(VI) removal at any time for known values of sorbent and initial sorbate concentration under observed test conditions. The effect of diverse ions has been studied and it is found that there is very little effect on the sorption of Cr(VI). The process was found to be exothermic with a maximum adsorption of 91.0% at 30°C for an initial concentration of 100 mg l−1 at pH 3. The process follows first-order kinetics and the data fits the Freundlich adsorption isotherm. Thermodynamic parameters were also evaluated. Desorption studies confirmed that adsorbent can be effectively regenerated using 0.2 M NaOH and 0.5 M NaCl and can then be reused.  相似文献   

13.
Hladik ML  Roberts AL  Bouwer EJ 《Water research》2005,39(20):5033-5044
Four chloroacetamide herbicides and 20 neutral chloroacetamide derivatives (known to occur as their environmental degradates) were subjected to simulated drinking water treatment (coagulation, oxidation and adsorption). Coagulation with alum and ferric chloride, at doses for optimum turbidity removal, provided little to no (<10%) removal of parent herbicides or neutral degradates. Chlorination with 6 mg/L applied free chlorine for 6 h was able to achieve 100% removal of those degradates lacking an acetanilide substituent; compounds possessing this functional group exhibited low (0–16%) removal efficiencies. Products were generally not identified, except in the case of dimethenamid and its deschloro degradate, both of which formed a single ring-chlorination product on their ready reaction (84% and 96% removal, respectively) with aqueous chlorine species. Treatment with ozone at an applied dose of 3 mg/L for 30 min proved effective (60–100%) at transforming all of the compounds under investigation to unidentified products. The parent herbicides and neutral degradates underwent adsorption by powdered activated carbon (PAC). Adsorption capacities (Freundlich K constants) correlated with Kow values.  相似文献   

14.
Dhoble RM  Lunge S  Bhole AG  Rayalu S 《Water research》2011,45(16):4769-4781
Magnetic binary oxide particles (MBOP) synthesized using chitosan template has been investigated for uptake capacity of arsenic (III). Batch experiments were performed to determine the rate of adsorption and equilibrium isotherm and also effect of various rate limiting factors including adsorbent dose, pH, optimum contact time, initial adsorbate concentration and influence of presence cations and anions. It was observed that uptake of arsenic (III) was independent of pH of the solution. Maximum adsorption of arsenic (III) was ∼99% at pH 7.0 with dose of adsorbent 1 g/L and initial As (III) concentration of 1.0 mg/L at optimal contact time of 14 h. The adsorption equilibrium data fitted well to Langmuir and Freundlich isotherm. The maximum adsorption capacity of adsorbent was 16.94 mg/g. With increase in concentration of Ca2+, Mg2+ from 50 mg/L to 600 mg/L, adsorption of As (III) was significantly reduced while for Fe3+ the adsorption of arsenic (III) was increased with increase in concentration. Temperature study was carried out at 293 K, 303 K and 313 K reveals that the adsorption process is exothermic nature. A distinct advantage of this adsorbent is that adsorbent can readily be isolated from sample solutions by application of an external magnetic field. Saturation magnetization is a key factor for successful magnetic separation was observed to be 18.78 emu/g which is sufficient for separation by conventional magnate.  相似文献   

15.
Gupta VK  Jain CK  Ali I  Sharma M  Saini VK 《Water research》2003,37(16):4038-4044
The bagasse fly ash, an industrial solid waste of sugar industry, was used for the removal of cadmium and nickel from wastewater. As much as 90% removal of cadmium and nickel is possible in about 60 and 80 min, respectively, under the batch test conditions. Effect of various operating variables, viz., solution pH, adsorbent dose, adsorbate concentration, temperature, particle size, etc., on the removal of cadmium and nickel has been studied. Maximum adsorption of cadmium and nickel occurred at a concentration of 14 and 12 mg x l(-1) and at a pH value of 6.0 and 6.5, respectively. A dose of 10 g x l(-1) of adsorbent was sufficient for the optimum removal of both the metal ions. The material exhibits good adsorption capacity and the adsorption data follow the Langmuir model better then the Freundlich model. The adsorption of both the metal ions increased with increasing temperature indicating endothermic nature of the adsorption process. Isotherms have been used to determine thermodynamic parameters of the process, viz., free energy change, enthalpy change and entropy change.  相似文献   

16.
Many raw waters in the arid North of Chile contain high concentrations of arsenic (0.1–1.0 mg/l) and, during the 1970s, drinking-water treatment using coagulation was introduced in an attempt to comply with the Chilean standard of 0.05 mg/l. The new World Health Organization recommendation of 0.01 mg/1 for drinking water has led to efforts to enhance arsenic removal.
This paper describes pilot-plant experiments which were carried out to optimize removal by varying the ferric chloride coagulant dose (3–9 mg/1 Fe) and pH value (pH 5.5–8.0) in a raw water which contained an average arsenic concentration of 0.44 mg/l. At pH 5.5, arsenic adsorption was best; however, a pH of 6.5 was considered to be the most suitable for treatment when considering floc elimination. An empirical formula to predict residual arsenic under different operational conditions was obtained and this was confirmed by data collected at a full-scale water-treatment plant.  相似文献   

17.
Gupta VK  Jain CK  Ali I  Chandra S  Agarwal S 《Water research》2002,36(10):2483-2490
The bagasse fly ash, obtained from the local sugar industry, has been used as inexpensive and effective adsorbent for the removal of lindane and malathion from wastewater. The optimum contact needed to reach equilibrium was found to be 60 min. Maximum removal takes place at pH 6.0. The removal of the pesticides increases with an increase in adsorbent dose and decreases with adsorbent particle size. The optimum adsorbent dose is 5 g/l of particle size 200-250 microm. Removal of the two pesticides was achieved up to 97-98% under optimum conditions. The material exhibits good adsorption capacity and follows both Langmuir and Freundlich models. Thermodynamic parameters also indicate the feasibility of the process. The adsorption was found to be exothermic in nature. At lower concentrations, adsorption is controlled by film diffusion, while at higher concentrations, it is controlled by particle diffusion mechanisms. The adsorbent is a very useful and economic product for the removal of lindane and malathion.  相似文献   

18.
Phosphorus removal by electric arc furnace steel slag and serpentinite   总被引:13,自引:0,他引:13  
Electric arc furnace (EAF) steel slag and serpentinite were tested in columns either alone or mixed with limestone to determine their capacity to remove phosphorus (P) from a solution containing initially 20mg P/L (for 114 days) than 400mg P/L (for 21 days). EAF steel slag was nearly 100% efficient due to specific P adsorption onto metal hydroxides and precipitation of hydroxyapatite. Serpentinite also showed a good performance that decreased with time, adsorption appearing to be the dominant mechanism for P removal. Mixing limestone with these two materials did not improve their performance and in the case of serpentinite, it actually even decreased it. In 114 days of experimentation, serpentinite alone and the mixture of serpentinite and limestone removed 1.0mg P/g while in 180 days of experimentation, EAF steel slag and the mixture of slag and limestone removed an average of 2.2mg P/g, without attaining their maximum P removal potential. The void hydraulic retention time (HRTv) was a key factor for growing hydroxyapatite crystals and had a significant effect on P removal efficiency by EAF steel slag. A temporary increase in HRTv caused by clogging resulted in an increase in EAF steel slag efficiency (from 80% to almost 100%) towards the end of investigation. Results from this study indicate that the use of EAF steel slag in constructed wetlands or filter beds is a promising solution for P removal via adsorption and precipitation mechanisms.  相似文献   

19.
1-Amino-8-naphthol-3,6-disulfonic acid (H-acid) is widely used in chemical industries for synthesis of direct, acid, reactive and azoic dye. The wastewater from H-acid manufacturing process is rich in various substituted derivatives of naphthalene and is one of the most hardly-treated wastewaters. A pretreatment method, ferrous ion-peroxide oxidation combined with coagulation, has been studied. The results have shown that the optimum pH value is below 4 and the suitable ferrous ion dosage is 200 mg/l. The COD removal of H-acid wastewater is about 50% and the residue have proved biodegradable when hydrogen peroxide dosage is 30 g/l. Ferrous ion-peroxide oxidation process can also improve efficiency of coagulation treatment. The overall COD removal can reach 90% or more when the concentration of ferrous ion is 200 mg/l, the dosage of hydrogen peroxide is 3 g/l and the ferric chloride dosage of two stage coagulation treatment is 15 g/l and 5 g/l, respectively. The groups on naphthalene ring, such as − + NO2, SO3 etc., are substituted by hydroxyl free radical, and then the ring is broken down during oxidation process of H-acid.  相似文献   

20.
李杰  李金成  李伟  李鹏 《供水技术》2010,4(5):17-20
就氢氧化铁对As(Ⅲ)的吸附动力学、吸附等温线以及pH和温度等影响因素进行了研究。结果表明:氢氧化铁对As(Ⅲ)的吸附动力学符合Lagergren二级吸附动力学模型,其吸附等温线可用Langmuir方程很好地描述,即属于单分子层吸附,试验得到的饱和吸附量为9.09mg/g;pH值在4.1~8.5内,氢氧化铁对As(Ⅲ)的去除率较高,保持在70%以上,超出这个范围,氢氧化铁对As(Ⅲ)的去除率逐渐降低,pH值为6.8左右时,氢氧化铁对As(Ⅲ)的去除率达到最高,约为94.8%;随着温度的升高,氢氧化铁对As(Ⅲ)的吸附率逐渐降低,在0~25℃时,氢氧化铁对As(Ⅲ)的去除率保持在80%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号